Abstract
Hainantoxin-III (HNTX-III) purified from the venom of the spider Ornithoctonus hainana is a novel neurotoxin preferentially inhibiting tetrodotoxin-sensitive voltage-gated sodium channels in rat dorsal root ganglion cells. The structure of this toxin in aqueous solution was investigated using 2-D 1H-NMR techniques. The complete sequencespecific assignments of proton resonances in the 1H-NMR spectra were obtained by analyzing a series of 2-D spectra, including DQF-COSY, TOCSY and NOESY spectra, in H2O or D2O. All the backbone protons and more than 95% of the side-chain protons have been assigned by dαN, dβN, and dNN connectivities in NOESY spectrum. Furthermore, the secondary structure of HNTX-III was identified from NMR data. It consists mainly of a short triple-stranded antiparallel β-sheet formed by Asp7 to Cys9, Tyr21 to Ser23, and Lys27 to Val30. Because HNTX-III shares high sequence identity (>70%) with HWTX-I and HNTX-I, we proposed that they all share a structural scaffold known as the inhibitor cystine knot architectural motif. This study provides a basis for the further determination of the solution conformation of HNTX-III.
Keywords: 2-D nuclear magnetic resonance (NMR), hainantoxin-III (HNTX-III), sequence-specific assignment, secondary structure.
Protein & Peptide Letters
Title:Sequence-specific 1H-NMR Assignment and Determination of the Secondary Structure of Hainantoxin-III from the Spider Ornithoctonus hainana
Volume: 20 Issue: 7
Author(s): Zhonghua Liu, Qi Zhu, Weijun Hu and Songping Liang
Affiliation:
Keywords: 2-D nuclear magnetic resonance (NMR), hainantoxin-III (HNTX-III), sequence-specific assignment, secondary structure.
Abstract: Hainantoxin-III (HNTX-III) purified from the venom of the spider Ornithoctonus hainana is a novel neurotoxin preferentially inhibiting tetrodotoxin-sensitive voltage-gated sodium channels in rat dorsal root ganglion cells. The structure of this toxin in aqueous solution was investigated using 2-D 1H-NMR techniques. The complete sequencespecific assignments of proton resonances in the 1H-NMR spectra were obtained by analyzing a series of 2-D spectra, including DQF-COSY, TOCSY and NOESY spectra, in H2O or D2O. All the backbone protons and more than 95% of the side-chain protons have been assigned by dαN, dβN, and dNN connectivities in NOESY spectrum. Furthermore, the secondary structure of HNTX-III was identified from NMR data. It consists mainly of a short triple-stranded antiparallel β-sheet formed by Asp7 to Cys9, Tyr21 to Ser23, and Lys27 to Val30. Because HNTX-III shares high sequence identity (>70%) with HWTX-I and HNTX-I, we proposed that they all share a structural scaffold known as the inhibitor cystine knot architectural motif. This study provides a basis for the further determination of the solution conformation of HNTX-III.
Export Options
About this article
Cite this article as:
Liu Zhonghua, Zhu Qi, Hu Weijun and Liang Songping, Sequence-specific 1H-NMR Assignment and Determination of the Secondary Structure of Hainantoxin-III from the Spider Ornithoctonus hainana, Protein & Peptide Letters 2013; 20 (7) . https://dx.doi.org/10.2174/0929866511320070005
DOI https://dx.doi.org/10.2174/0929866511320070005 |
Print ISSN 0929-8665 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5305 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers