Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Colloidal Behavior of Proteins: Effects of the Second Virial Coefficient on Solubility, Crystallization and Aggregation of Proteins in Aqueous Solution

Author(s): Joseph J. Valente, Robert W. Payne, Mark C. Manning, W. W. Wilson and Charles S. Henry

Volume 6, Issue 6, 2005

Page: [427 - 436] Pages: 10

DOI: 10.2174/138920105775159313

Price: $65

Abstract

There has been an increasing awareness that proteins, like other biopolymers, are large enough to exhibit colloidal behavior in aqueous solution. Net attractive or repulsive forces have been found to govern important physical properties, such as solubility and aggregation. The extent of intermolecular interactions, usually expressed in terms of the osmotic second virial coefficient, B, is most often measured using static light scattering. More recently, self-interaction chromatography (SIC) has emerged as a method for rapid determination of B in actual formulations, as it uses much less protein and has higher throughput. This review will summarize the relationship of B to crystallization, solubility, and aggregation of proteins in aqueous solution. Moreover, the capability of SIC to obtain B values in a rapid and reproducible fashion will be described in detail. Finally, the use of miniaturized devices to measure B is presented.

Keywords: Second virial coefficient, B values, self-interaction chromatography, protein aggregation, protein solubility, protein crystallization


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy