Abstract
Trauma introduces damaging stressors that compromise protein, lipid, and nucleic acid integrity. Aggregates of unfolded and misfolded proteins in the endoplasmic reticulum (ER) triggers the ER stress response (ERSR)/unfolded protein response (UPR) leading to activation of three signaling pathways mediated by PERK, ATF6, and IRE1. Initially, the ERSR/UPR is pro-homeostatic as it globally slows translation while increasing translation of chaperone proteins and inducing ER-associated degradation. If the cellular stress is not controlled, apoptosis is subsequently induced through several mechanisms, of which the most well-described is CHOP. Following spinal cord injury (SCI), mice deficient in CHOP signaling show increased spared white matter and enhanced locomotor recovery by 6 weeks. At 24 hours after SCI, ATF4 and CHOP are upregulated in under perfused microvessels. We observed vascular protection 3 days post-SCI and a significant decrease in macrophage infiltration by the end of the first week. These results suggest that modulating ER-stress signaling in endothelial cells and macrophages may protect against vascular injury and attenuate inflammation post-SCI.
Keywords: Angiogenesis, CHOP, endoplasmic reticulum stress, endothelial cell, inflammation, spinal cord injury, (TRAF2), (HAECs), (PERK), (ECs)
Current Neurovascular Research
Title:Deletion of Endoplasmic Reticulum Stress-Induced CHOP Protects Microvasculature Post-Spinal Cord Injury
Volume: 9 Issue: 4
Author(s): Janelle M. Fassbender, Sujata Saraswat-Ohri, Scott A. Myers, Mark J. Gruenthal, Richard L. Benton and Scott R. Whittemore
Affiliation:
Keywords: Angiogenesis, CHOP, endoplasmic reticulum stress, endothelial cell, inflammation, spinal cord injury, (TRAF2), (HAECs), (PERK), (ECs)
Abstract: Trauma introduces damaging stressors that compromise protein, lipid, and nucleic acid integrity. Aggregates of unfolded and misfolded proteins in the endoplasmic reticulum (ER) triggers the ER stress response (ERSR)/unfolded protein response (UPR) leading to activation of three signaling pathways mediated by PERK, ATF6, and IRE1. Initially, the ERSR/UPR is pro-homeostatic as it globally slows translation while increasing translation of chaperone proteins and inducing ER-associated degradation. If the cellular stress is not controlled, apoptosis is subsequently induced through several mechanisms, of which the most well-described is CHOP. Following spinal cord injury (SCI), mice deficient in CHOP signaling show increased spared white matter and enhanced locomotor recovery by 6 weeks. At 24 hours after SCI, ATF4 and CHOP are upregulated in under perfused microvessels. We observed vascular protection 3 days post-SCI and a significant decrease in macrophage infiltration by the end of the first week. These results suggest that modulating ER-stress signaling in endothelial cells and macrophages may protect against vascular injury and attenuate inflammation post-SCI.
Export Options
About this article
Cite this article as:
M. Fassbender Janelle, Saraswat-Ohri Sujata, A. Myers Scott, J. Gruenthal Mark, L. Benton Richard and R. Whittemore Scott, Deletion of Endoplasmic Reticulum Stress-Induced CHOP Protects Microvasculature Post-Spinal Cord Injury, Current Neurovascular Research 2012; 9 (4) . https://dx.doi.org/10.2174/156720212803530627
DOI https://dx.doi.org/10.2174/156720212803530627 |
Print ISSN 1567-2026 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5739 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Interleukin-1β Receptor Antagonism Prevents Cognitive Impairment Following Experimental Bacterial Meningitis
Current Neurovascular Research Synopsis on Managment Strategies for Neurodegenerative Disorders: Challenges from Bench to Bedside in Successful Drug Discovery and Development
Current Topics in Medicinal Chemistry Growth Factors and Astrocytes Metabolism: Possible Roles for Platelet Derived Growth Factor
Medicinal Chemistry Thinking Outside the Brain: Immunorregulation in Multiple Sclerosis
Current Immunology Reviews (Discontinued) Neuroprotective Actions of Flavones and Flavonols: Mechanisms and Relationship to Flavonoid Structural Features
Central Nervous System Agents in Medicinal Chemistry Recent Advances on the Roles of NO in Cancer and Chronic Inflammatory Disorders
Current Medicinal Chemistry Receptor for AGEs (RAGE) as Mediator of NF-kB Pathway Activation in Neuroinflammation and Oxidative Stress
CNS & Neurological Disorders - Drug Targets Opioids Resistance in Chronic Pain Management
Current Neuropharmacology Selective Pharmacological Inhibition of the Pacemaker Channel Isoforms (HCN1-4) as New Possible Therapeutical Targets
Current Medicinal Chemistry Editorial [Hot Topic: Spinal Cord Injury and Repair - Part I (Executive Editor: Weihong Pan)]
Current Pharmaceutical Design Neurological Aspects of Medical Use of Cannabidiol
CNS & Neurological Disorders - Drug Targets Stereotactic Body Radiotherapy in the Management of Head and Neck Malignancies
Current Cancer Therapy Reviews Brain Delivery of Chemotherapeutics in Brain Cancer
Anti-Cancer Agents in Medicinal Chemistry Nonviral Approach for Targeted Nucleic Acid Delivery
Current Medicinal Chemistry Going 3D – Cell Culture Approaches for Stem Cell Research and Therapy
Current Tissue Engineering (Discontinued) Neuroprotection by the α2-Adrenoceptor Agonist, Dexmedetomidine, in Experimental Stroke Models
Vascular Disease Prevention (Discontinued) Osteoprotegerin and Diabetes-Associated Pathologies
Current Molecular Medicine TNF-α Inhibition as a Treatment Strategy for Neurodegenerative Disorders: New Drug Candidates and Targets
Current Alzheimer Research Subject Index To Volume 2
Current Drug Targets Royal Jelly Acid, 10-Hydroxy-trans-2-Decenoic Acid, as a Modulator of the Innate Immune Responses
Endocrine, Metabolic & Immune Disorders - Drug Targets