Abstract
Gene delivery/expression vectors have been used as fundamental technologies in gene therapy since the 1980s. These technologies are also being applied in regenerative medicine as tools to reprogram cell genomes to a pluripotent state and to other cell lineages. Rapid progress in these new research areas and expectations for their translation into clinical applications have facilitated the development of more sophisticated gene delivery/expression technologies. Since its isolation in 1953 in Japan, Sendai virus (SeV) has been widely used as a research tool in cell biology and in industry, but the application of SeV as a recombinant viral vector has been investigated only recently. Recombinant SeV vectors have various unique characteristics, such as low pathogenicity, powerful capacity for gene expression and a wide host range. In addition, the cytoplasmic gene expression mediated by this vector is advantageous for applications, in that chromosomal integration of exogenous genes can be undesirable. In this review, we introduce a brief historical background on the development of recombinant SeV vectors and describe their current applications in gene therapy. We also describe the application of SeV vectors in advanced nuclear reprogramming and introduce a defective and persistent SeV vector (SeVdp) optimized for such reprogramming.
Keywords: Sendai virus, gene therapy, nuclear reprogramming, induced pluripotent stem cells (iPSCs), regenerative medicine, viral vectors, gene delivery vectors, DNA–carrier
Current Gene Therapy
Title:Development of Sendai Virus Vectors and their Potential Applications in Gene Therapy and Regenerative Medicine
Volume: 12 Issue: 5
Author(s): Mahito Nakanishi and Makoto Otsu
Affiliation:
Keywords: Sendai virus, gene therapy, nuclear reprogramming, induced pluripotent stem cells (iPSCs), regenerative medicine, viral vectors, gene delivery vectors, DNA–carrier
Abstract: Gene delivery/expression vectors have been used as fundamental technologies in gene therapy since the 1980s. These technologies are also being applied in regenerative medicine as tools to reprogram cell genomes to a pluripotent state and to other cell lineages. Rapid progress in these new research areas and expectations for their translation into clinical applications have facilitated the development of more sophisticated gene delivery/expression technologies. Since its isolation in 1953 in Japan, Sendai virus (SeV) has been widely used as a research tool in cell biology and in industry, but the application of SeV as a recombinant viral vector has been investigated only recently. Recombinant SeV vectors have various unique characteristics, such as low pathogenicity, powerful capacity for gene expression and a wide host range. In addition, the cytoplasmic gene expression mediated by this vector is advantageous for applications, in that chromosomal integration of exogenous genes can be undesirable. In this review, we introduce a brief historical background on the development of recombinant SeV vectors and describe their current applications in gene therapy. We also describe the application of SeV vectors in advanced nuclear reprogramming and introduce a defective and persistent SeV vector (SeVdp) optimized for such reprogramming.
Export Options
About this article
Cite this article as:
Nakanishi Mahito and Otsu Makoto, Development of Sendai Virus Vectors and their Potential Applications in Gene Therapy and Regenerative Medicine, Current Gene Therapy 2012; 12 (5) . https://dx.doi.org/10.2174/156652312802762518
DOI https://dx.doi.org/10.2174/156652312802762518 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Pharmacophore Modeling and 3D QSAR Studies of Novel Human Carbonic Anhydrase IX Inhibitors
Letters in Drug Design & Discovery Immune Checkpoint Regulators: A New Era Toward Promising Cancer Therapy
Current Cancer Drug Targets Status of Non-Classical Mononuclear Platinum Anticancer Drug Development
Mini-Reviews in Medicinal Chemistry High Therapeutic Potential for Systemic Delivery of a Liposomeconjugated Herpes Simplex Virus
Current Cancer Drug Targets Use of Anti-Cancer Drugs, Mitocans, to Enhance the Immune Responses against Tumors
Current Pharmaceutical Biotechnology Mechanisms of Cytotoxicity of Anticancer Titanocenes
Anti-Cancer Agents in Medicinal Chemistry Genistein Potentiates the Anti-cancer Effects of Gemcitabine in Human Osteosarcoma via the Downregulation of Akt and Nuclear Factor-κB Pathway
Anti-Cancer Agents in Medicinal Chemistry Doxorubicin-Loaded Nanoparticles: New Advances in Breast Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Applications of High Content Screening in Life Science Research
Combinatorial Chemistry & High Throughput Screening The Medical Potential of Antimicrobial Peptides from Insects
Current Topics in Medicinal Chemistry Recent Advances in Small Molecule Inhibitors of VEGFR and EGFR Signaling Pathways
Current Topics in Medicinal Chemistry Ligand-Targeted Liposomal Therapies of Neuroblastoma
Current Medicinal Chemistry Towards Understanding the Role of Cancer-Associated Inflammation in Chemoresistance
Current Pharmaceutical Design Methionine Aminopeptidases as Potential Targets for Treatment of Gastrointestinal Cancers and other Tumors
Current Drug Targets Investigations of Malignant Mesothelioma
Current Respiratory Medicine Reviews Pharmacological Characterization of Histone Deacetylase Inhibitor and Tumor Cell-Growth Inhibition Properties of New Benzofuranone Compounds
Current Cancer Drug Targets Genetics and Epigenetics of Lung Cancer: Mechanisms and Future Perspectives
Current Cancer Therapy Reviews Too Much of a Good Thing: Suicide Prevention Promotes Chemoresistance in Ovarian Carcinoma
Current Cancer Drug Targets Immunohistochemical and Serological 90K / Mac-2BP Detection in Hepatocellular Carcinoma Patients: Different Behaviour of Two Monoclonal Antibodies
Medicinal Chemistry Combined Anticancer Therapies: An Overview of the Latest Applications
Anti-Cancer Agents in Medicinal Chemistry