Abstract
Pain is a fundamental experience characterized by an unpleasant physical perception and corresponding emotional state. Disease or trauma affecting the peripheral or central neuronal sensory pathway can produce a form of chronic pain known as neuropathic pain. This pain may occur with central nervous system disorders, such as stroke or multiple sclerosis, or with conditions associated with peripheral nerve damage, such as diabetic neuropathy or viral infection. It can also be induced by mechanical trauma or by neurotoxic chemicals (for example, chemotherapeutics). The control of pain has been a major goal of pharmacotherapy from the earliest times; however, effective management of both acute and chronic pain remains suboptimal. The situation is particularly challenging for chronic pain and neuropathic pain sufferers, for which there is a high unmet need. Indeed, it is estimated that only one in four patients experience over 50% pain relief [1].
One of the major reasons why pain relief remains such a challenge is the robust inter-individual variability that exists in sensitivity to pain and the response to analgesics [2]. Much of the variability in chronic pain and analgesic response is heritable, yet an understanding of the genetic determinants underlying this variability is far from complete. In a study just published by Sorge and colleagues (2012), the authors show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X receptors function as ATP-gated nonselective ion channels permeable to Na+, K+, and Ca2+. The P2X7R is rather unusual among the P2X receptor family in that sustained activation by extracellular ATP causes the formation of a reversible plasma membrane pore permeable to molecules with a mass of up to 900 Da [3]. Specifically these authors made use of genome-wide linkage analyses to identify an association between nerve-injury-induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7R gene. Mice bearing P2X7Rs having impaired pore formation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Importantly, in independent human chronic pain cohorts (mastectomy and osteoarthritis), a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2X7R was observed.
Currently available drugs for neuropathic pain include antidepressants, anticonvulsants, sodium channel blockers, N-methyl-Daspartate receptor antagonists, and opioids. Unfortunately, these drugs were designed to hit neuronal targets and focus on blocking neurotransmission. They can treat pain symptoms but not the underlying pathology of neuropathic pain. Further, they only provide a transient relief of neuropathic pain in only a fraction of patients and produce severe CNS side effects. From their findings, Sorge et al. (2012) posit that selectively targeting P2X7R pore formation while leaving cation channel activity intact could provide a preferred strategy for reducing pain in individuals who carry P2X7R haplotypes that confer a high risk for chronic pain.
CNS & Neurological Disorders - Drug Targets
Title:Commentary Research Highlights (Purines, Pores and Pain: Is it in Our Genes?)
Volume: 11 Issue: 4
Author(s): Stephen D. Skaper
Affiliation:
Abstract: Pain is a fundamental experience characterized by an unpleasant physical perception and corresponding emotional state. Disease or trauma affecting the peripheral or central neuronal sensory pathway can produce a form of chronic pain known as neuropathic pain. This pain may occur with central nervous system disorders, such as stroke or multiple sclerosis, or with conditions associated with peripheral nerve damage, such as diabetic neuropathy or viral infection. It can also be induced by mechanical trauma or by neurotoxic chemicals (for example, chemotherapeutics). The control of pain has been a major goal of pharmacotherapy from the earliest times; however, effective management of both acute and chronic pain remains suboptimal. The situation is particularly challenging for chronic pain and neuropathic pain sufferers, for which there is a high unmet need. Indeed, it is estimated that only one in four patients experience over 50% pain relief [1].
One of the major reasons why pain relief remains such a challenge is the robust inter-individual variability that exists in sensitivity to pain and the response to analgesics [2]. Much of the variability in chronic pain and analgesic response is heritable, yet an understanding of the genetic determinants underlying this variability is far from complete. In a study just published by Sorge and colleagues (2012), the authors show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X receptors function as ATP-gated nonselective ion channels permeable to Na+, K+, and Ca2+. The P2X7R is rather unusual among the P2X receptor family in that sustained activation by extracellular ATP causes the formation of a reversible plasma membrane pore permeable to molecules with a mass of up to 900 Da [3]. Specifically these authors made use of genome-wide linkage analyses to identify an association between nerve-injury-induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7R gene. Mice bearing P2X7Rs having impaired pore formation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Importantly, in independent human chronic pain cohorts (mastectomy and osteoarthritis), a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2X7R was observed.
Currently available drugs for neuropathic pain include antidepressants, anticonvulsants, sodium channel blockers, N-methyl-Daspartate receptor antagonists, and opioids. Unfortunately, these drugs were designed to hit neuronal targets and focus on blocking neurotransmission. They can treat pain symptoms but not the underlying pathology of neuropathic pain. Further, they only provide a transient relief of neuropathic pain in only a fraction of patients and produce severe CNS side effects. From their findings, Sorge et al. (2012) posit that selectively targeting P2X7R pore formation while leaving cation channel activity intact could provide a preferred strategy for reducing pain in individuals who carry P2X7R haplotypes that confer a high risk for chronic pain.
Export Options
About this article
Cite this article as:
D. Skaper Stephen, Commentary Research Highlights (Purines, Pores and Pain: Is it in Our Genes?), CNS & Neurological Disorders - Drug Targets 2012; 11 (4) . https://dx.doi.org/10.2174/187152712800792776
DOI https://dx.doi.org/10.2174/187152712800792776 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
![](/images/wayfinder.jpg)
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Uveitis in Rheumatic Diseases
Current Rheumatology Reviews Effect of Adding Proprioceptive Exercise to Balance Training in Older Adults with Diabetes: A Systematic Review
Current Diabetes Reviews Rheumatological Manifestations in Diabetes Mellitus
Current Diabetes Reviews Genes Involved in Hereditary Hearing Impairment
Current Genomics Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Diabetic Retinopathy: Mechanistic Insights into High Glucose-Induced Retinal Cell Death
Current Clinical Pharmacology An Insight into the Recent Diabetes Trials: What is the Best Approach to Prevent Macrovascular and Microvascular Complications?
Current Diabetes Reviews Tetracyclines and Neuromuscular Disorders
Current Neuropharmacology Potential Utility of Self-Report Measures of Affect to Optimise Exercise Adherence in People with Type 2 Diabetes
Current Diabetes Reviews Rufinamide Improves Functional and Behavioral Deficits <i>via</i> Blockade of Tetrodotoxin-Resistant Sodium Channels in Diabetic Neuropathy
Current Neurovascular Research Gait-Related Strategies for the Prevention of Plantar Ulcer Development in the High Risk Foot
Current Diabetes Reviews Neuropeptide Receptors in Intestinal Disease: Physiology and Therapeutic Potential
Current Pharmaceutical Design HDL Genetic Defects
Current Pharmaceutical Design The Management of the Infected Diabetic Foot
Current Diabetes Reviews Melatonin-mitochondria Interplay in Health and Disease
Current Topics in Medicinal Chemistry Vitamins and Type 2 Diabetes Mellitus
Endocrine, Metabolic & Immune Disorders - Drug Targets Assessment of Endothelial Function by Positron Emission Tomography
Current Cardiology Reviews Nuclear Magnetic Resonance Spectroscopy and Genetic Disorders
Current Medicinal Chemistry Metabolic Stress and Inflammation: Implication in Treatment for Neurological Disorders
CNS & Neurological Disorders - Drug Targets From a Dull Enzyme to Something Else: Facts and Perspectives Regarding Aldose Reductase
Current Medicinal Chemistry Role of NFAT5 in Inflammatory Disorders Associated with Osmotic Stress
Current Genomics