Abstract
The ubiquitin-proteasome pathway plays a central role in the degradation of proteins involved in several pathways including the cell cycle, cellular proliferation and apoptosis. Bortezomib is the first proteasome inhibitor to enter clinical use, and received approval by the Food and Drug Administration (FDA) for the treatment of patients with multiple myeloma, therefore validating inhibition of the proteasome as an anticancer target. The approval of Bortezomib was based on a large, international, multicenter phase III trial showing its efficacy and safety compared with conventional therapy. Preclinical data also demonstrates the synergistic effect of bortezomib with other chemotherapeutic agents and its ability to overcome drug resistance. Since then several other proteasome inhibitors have been developed. The anti-tumor activities of bortezomib have been attributed to its effect on pro-apoptotic pathways including the inhibition of NF-κB and induction of endoplasmic reticulum stress. However, the molecular mechanisms are not fully understood. In this review, we will summarize the molecular mechanism of apoptosis by bortezomib.
Keywords: dependent proteolysis, proteasome, bortezomib-induced apoptosis, cyclin D1
Anti-Cancer Agents in Medicinal Chemistry
Title: Targeting the Ubiquitin-Proteasome Pathway in Cancer Therapy
Volume: 7 Issue: 3
Author(s): Yuki Ishii, Samuel Waxman and Doris Germain
Affiliation:
Keywords: dependent proteolysis, proteasome, bortezomib-induced apoptosis, cyclin D1
Abstract: The ubiquitin-proteasome pathway plays a central role in the degradation of proteins involved in several pathways including the cell cycle, cellular proliferation and apoptosis. Bortezomib is the first proteasome inhibitor to enter clinical use, and received approval by the Food and Drug Administration (FDA) for the treatment of patients with multiple myeloma, therefore validating inhibition of the proteasome as an anticancer target. The approval of Bortezomib was based on a large, international, multicenter phase III trial showing its efficacy and safety compared with conventional therapy. Preclinical data also demonstrates the synergistic effect of bortezomib with other chemotherapeutic agents and its ability to overcome drug resistance. Since then several other proteasome inhibitors have been developed. The anti-tumor activities of bortezomib have been attributed to its effect on pro-apoptotic pathways including the inhibition of NF-κB and induction of endoplasmic reticulum stress. However, the molecular mechanisms are not fully understood. In this review, we will summarize the molecular mechanism of apoptosis by bortezomib.
Export Options
About this article
Cite this article as:
Ishii Yuki, Waxman Samuel and Germain Doris, Targeting the Ubiquitin-Proteasome Pathway in Cancer Therapy, Anti-Cancer Agents in Medicinal Chemistry 2007; 7 (3) . https://dx.doi.org/10.2174/187152007780618180
DOI https://dx.doi.org/10.2174/187152007780618180 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Oncomirs: From Tumor Biology to Molecularly Targeted Anticancer Strategies
Mini-Reviews in Medicinal Chemistry Genomic Signatures for Individualized Treatment of Malignant Tumors
Current Drug Discovery Technologies Preparation and Quality Control of <sup>111</sup>In-Plerixafor for Chemokine Receptor CXCR4
Recent Patents and Topics on Imaging (Discontinued) Cell-Based Assay System to Estimate the Effect of 125I Seeds on Cancer Cells: Effect of Osteopontin
Recent Patents on Anti-Cancer Drug Discovery Discovery of Hedgehog Antagonists for Cancer Therapy
Current Medicinal Chemistry Editorial: Brain Imaging and Automatic Analysis in Neurological and Psychiatric Diseases – Part II
CNS & Neurological Disorders - Drug Targets Utilizing Ultrasound to Transiently Increase Blood-Brain Barrier Permeability, Modulate of the Tight Junction Proteins, and Alter Cytoskeletal Structure
Current Neurovascular Research Histone Deacetylase Inhibitors: Molecular and Biological Activity as a Premise to Clinical Application
Current Drug Metabolism An Overview of Bioactive Peptides for in vivo Imaging and Therapy in Human Diseases
Mini-Reviews in Medicinal Chemistry Exosomal miR-214-5p Released from Glioblastoma Cells Modulates Inflammatory Response of Microglia after Lipopolysaccharide Stimulation through Targeting CXCR5
CNS & Neurological Disorders - Drug Targets MicroRNAs Regulate the Epithelial to Mesenchymal Transition (EMT) in Cancer Progression
MicroRNA Synergism of Temozolomide, Metformin, and Epigallocatechin Gallate Promotes Oxidative Stress-Induced Apoptosis in Glioma Cells
Current Drug Therapy Functional Role of miR-34 Family in Human Cancer
Current Drug Targets Gamma Linolenic Acid: An Antiinflammatory Omega-6 Fatty Acid
Current Pharmaceutical Biotechnology Aptamers: Potential Applications to Pancreatic Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Rational Targeting of the Urokinase Receptor (uPAR): Development of Antagonists and Non-Invasive Imaging Probes
Current Drug Targets Patent Selections:
Current Biomarkers (Discontinued) Influence of Trishomocubanes on Sigma Receptor Binding of N-(1-Benzylpiperidin- 4-yl)-4-[123I]iodobenzamide In Vivo in the Rat Brain
Medicinal Chemistry Gliomas: Current Issues in Diagnosis and Treatment
Current Medical Imaging The Current State of Potential Therapeutic Modalities for Glioblastoma Multiforme: A Clinical Review
Current Drug Metabolism