Abstract
Many plants produce enzymes with N-glycosidase activity, also known as Ribosome Inactivating Proteins. These proteins remove a specific adenine residue from the ribosomal RNA (28S in eukaryotes) inducing the block of protein synthesis by inhibiting the binding of the Elongation Factor 2. Both eukaryotic and prokaryotic ribosomes (with different sensitivity) can irreversibly be damaged by the action of these enzymes, suggesting their use as cytotoxic drugs. In fact several applications of targeted N-glycosidases have been developed (i.e. immunotoxins) for the treatment of human diseases such as leukaemia, but biotechnological development has furthermore suggested new applications of targeted N-glycosidases (i.e. Ig192-saporin) that are now used as powerful tools for cell biology research. The high number of enzymes available and the possibility to express these proteins as recombinant products, allow to predict new formulations and applications discussed in this paper starting from the example of the model toxins ricin and saporin.
Keywords: N-glycosidases, Saporin, Ricin, toxins, immunotoxins
Current Chemical Biology
Title: Ricin and Saporin: Plant Enzymes for the Research and the Clinics
Volume: 4 Issue: 2
Author(s): Francesco Giansanti, Luana Di Leandro, Ilias Koutris, Alessio Cialfi, Elisabetta Benedetti, Giulio Laurenti, Giuseppina Pitari and Rodolfo Ippoliti
Affiliation:
Keywords: N-glycosidases, Saporin, Ricin, toxins, immunotoxins
Abstract: Many plants produce enzymes with N-glycosidase activity, also known as Ribosome Inactivating Proteins. These proteins remove a specific adenine residue from the ribosomal RNA (28S in eukaryotes) inducing the block of protein synthesis by inhibiting the binding of the Elongation Factor 2. Both eukaryotic and prokaryotic ribosomes (with different sensitivity) can irreversibly be damaged by the action of these enzymes, suggesting their use as cytotoxic drugs. In fact several applications of targeted N-glycosidases have been developed (i.e. immunotoxins) for the treatment of human diseases such as leukaemia, but biotechnological development has furthermore suggested new applications of targeted N-glycosidases (i.e. Ig192-saporin) that are now used as powerful tools for cell biology research. The high number of enzymes available and the possibility to express these proteins as recombinant products, allow to predict new formulations and applications discussed in this paper starting from the example of the model toxins ricin and saporin.
Export Options
About this article
Cite this article as:
Giansanti Francesco, Di Leandro Luana, Koutris Ilias, Cialfi Alessio, Benedetti Elisabetta, Laurenti Giulio, Pitari Giuseppina and Ippoliti Rodolfo, Ricin and Saporin: Plant Enzymes for the Research and the Clinics, Current Chemical Biology 2010; 4 (2) . https://dx.doi.org/10.2174/2212796811004020099
DOI https://dx.doi.org/10.2174/2212796811004020099 |
Print ISSN 2212-7968 |
Publisher Name Bentham Science Publisher |
Online ISSN 1872-3136 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Ginkgo biloba Extract in Vascular Protection: Molecular Mechanisms and Clinical Applications
Current Vascular Pharmacology In Vivo Optical Imaging in Gene & Cell Therapy
Current Gene Therapy Eriocalyxin B-Induced Apoptosis in Pancreatic Adenocarcinoma Cells Through Thiol-Containing Antioxidant Systems and Downstream Signalling Pathways
Current Molecular Medicine Design, Synthesis and Anticancer Activity Against the MCF-7 Cell Line of Benzo-Fused 1,4-Dihetero Seven- and Six-Membered Tethered Pyrimidines and Purines
Current Medicinal Chemistry Anticancer Potential of Dietary Natural Products: A Comprehensive Review
Anti-Cancer Agents in Medicinal Chemistry Analysis of Fish IL-1β and Derived Peptide Sequences Indicates Conserved Structures with Species-Specific IL-1 Receptor Binding: Implications for Pharmacological Design
Current Pharmaceutical Design Recombinant Immunotoxins for the Treatment of Chemoresistant Hematologic Malignancies
Current Pharmaceutical Design Resistance in Cancer: A Target for Drug Discovery
Current Medicinal Chemistry - Anti-Cancer Agents Bhasma: Indian Perspective of Nanomedicinal Technology
Recent Patents on Nanomedicine Therapeutic Strategy of Advanced Hepatocellular Carcinoma by Using Combined Intra-Arterial Chemotherapy
Recent Patents on Anti-Cancer Drug Discovery Hypocholesterolemia
Current Vascular Pharmacology Emerging Roles for Modulation of microRNA Signatures in Cancer Chemoprevention
Current Cancer Drug Targets Angiogenesis and Angiogenesis Inhibitors: a New Potential Anticancer Therapeutic Strategy
Current Drug Targets - Immune, Endocrine & Metabolic Disorders Look Into My Onco-forest - Review of Plant Natural Products with Anticancer Activity
Current Topics in Medicinal Chemistry Whole Cell Biocatalysts for the Preparation of Nucleosides and their Derivatives
Current Pharmaceutical Design The Challenge of Exploiting ABCG2 in the Clinic
Current Pharmaceutical Biotechnology Pharmacogenetics of Phase I and Phase II Drug Metabolism
Current Pharmaceutical Design Molecular Targets for the Treatment of Multiple Myeloma
Current Cancer Drug Targets Advances in the Management of Brain Tumors in Infants
Current Cancer Therapy Reviews Pharma-metabolomics in Neonatology: is it a Dream or a Fact?
Current Pharmaceutical Design