Abstract
Experimental autoimmune encephalomyelitis (EAE), a widely recognized animal model of multiple sclerosis (MS), is highly useful for studying inflammation, demyelination, and neurodegeneration in the central nervous system (CNS). EAE exhibits many similarities with MS, which is a chronic inflammatory disease affecting CNS white matter in humans. Various studies have indicated that EAE is a particularly useful animal model for understanding both the mechanisms of immune-mediated CNS pathology and also the progressive clinical course of MS. Demyelination and axonal dysfunction have previously been shown in MS and EAE but current evidences indicate that axonal damage and neuron death also occur, demonstrating that these diseases harbor a neurodegenerative component. Recent studies also have shown that the activation of calpain and caspase pathways contribute to the apoptotic death of oligodendrocytes and neurons, promoting the pathological events leading to neurological deficits. Apoptosis is involved in the disease-regulating as well as in the disease-promoting processes in EAE. This review discusses the major involvement of calpain and caspase pathways in causing demyelination and neurodegeneration in EAE animals.
Keywords: Apoptosis, calpain, caspase, cytokine, demyelination, experimental autoimmune encephalomyelitis, multiple sclerosis, neurodegeneration
CNS & Neurological Disorders - Drug Targets
Title: Activation of Calpain and Caspase Pathways in Demyelination and Neurodegeneration in Animal Model of Multiple Sclerosis
Volume: 7 Issue: 3
Author(s): Arabinda Das, M. Kelly Guyton, Jonathan T. Butler, Swapan K. Ray and Naren L. Banik
Affiliation:
Keywords: Apoptosis, calpain, caspase, cytokine, demyelination, experimental autoimmune encephalomyelitis, multiple sclerosis, neurodegeneration
Abstract: Experimental autoimmune encephalomyelitis (EAE), a widely recognized animal model of multiple sclerosis (MS), is highly useful for studying inflammation, demyelination, and neurodegeneration in the central nervous system (CNS). EAE exhibits many similarities with MS, which is a chronic inflammatory disease affecting CNS white matter in humans. Various studies have indicated that EAE is a particularly useful animal model for understanding both the mechanisms of immune-mediated CNS pathology and also the progressive clinical course of MS. Demyelination and axonal dysfunction have previously been shown in MS and EAE but current evidences indicate that axonal damage and neuron death also occur, demonstrating that these diseases harbor a neurodegenerative component. Recent studies also have shown that the activation of calpain and caspase pathways contribute to the apoptotic death of oligodendrocytes and neurons, promoting the pathological events leading to neurological deficits. Apoptosis is involved in the disease-regulating as well as in the disease-promoting processes in EAE. This review discusses the major involvement of calpain and caspase pathways in causing demyelination and neurodegeneration in EAE animals.
Export Options
About this article
Cite this article as:
Das Arabinda, Guyton Kelly M., Butler T. Jonathan, Ray K. Swapan and Banik L. Naren, Activation of Calpain and Caspase Pathways in Demyelination and Neurodegeneration in Animal Model of Multiple Sclerosis, CNS & Neurological Disorders - Drug Targets 2008; 7 (3) . https://dx.doi.org/10.2174/187152708784936699
DOI https://dx.doi.org/10.2174/187152708784936699 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Glioma: Tryptophan Catabolite and Melatoninergic Pathways Link microRNA, 14-3- 3, Chromosome 4q35, Epigenetic Processes and other Glioma Biochemical Changes
Current Pharmaceutical Design Heat Shock Proteins: Therapeutic Perspectives in Inflammatory Disorders
Recent Patents on Inflammation & Allergy Drug Discovery The Nrf2-ARE Pathway: A Valuable Therapeutic Target for the Treatment of Neurodegenerative Diseases
Recent Patents on CNS Drug Discovery (Discontinued) Thymosin β4 Protein Therapy for Cardiac Repair
Current Pharmaceutical Design Multiple Sclerosis, Gut Microbiota and Permeability: Role of Tryptophan Catabolites, Depression and the Driving Down of Local Melatonin
Current Pharmaceutical Design Therapeutic Indications and Action Mechanisms of Bilirubin: Suggestions from Natural Calculus Bovis
Current Signal Transduction Therapy Mouse Models of Autoimmune Diseases
Current Drug Discovery Technologies The Dendritic Cell-T Cell Synapse as a Determinant of Autoimmune Pathogenesis
Current Pharmaceutical Design Mesenchymal Stromal Cells in Rheumatoid Arthritis: Biological Properties and Clinical Applications
Current Stem Cell Research & Therapy Identification of Essential cis Element in 5'UTR of Nef mRNA for Nef Translation
Current HIV Research Stem Cells as a Potential Therapeutic Option for Treating Neurodegenerative Diseases
Current Stem Cell Research & Therapy Inflammation in Parkinsons Diseases and Other Neurodegenerative Diseases: Cause and Therapeutic Implications
Current Pharmaceutical Design Advances in Interleukin-12 Gene Therapy for Acquired Liver Diseases
Current Gene Therapy Isoprostanes as Biomarkers and Mediators of Oxidative Injury in Infant and Adult Central Nervous System Diseases
Current Neurovascular Research Seeing Genes at Work in the Living Brain with Non-Invasive Molecular Imaging
Current Gene Therapy The Regulation of Neuroimmune-Endocrine Interactions: Mechanisms,Molecular Pathways Unraveled and the Pivotal Role of Cytokines – A Unsung Putative Bidirectional Interdependence between the Immune and Neuroendocrine Interfaces
Current Immunology Reviews (Discontinued) Microglial Integrity is Maintained by Erythropoietin Through Integration of Akt and Its Substrates of lycogen Synthase Kinase-3β, β-Catenin, and Nuclear Factor-κB
Current Neurovascular Research A Friend in Need May Not be a Friend Indeed: Role of Microglia in Neurodegenerative Diseases
CNS & Neurological Disorders - Drug Targets New Insights of CTLA-4 into Its Biological Function in Breast Cancer
Current Cancer Drug Targets Putative Immune Regulatory Role of Statins
Current Immunology Reviews (Discontinued)