Abstract
Scanning probe microscope (SPM) has been developed as a powerful tool for obtaining high resolution topographic images of biological samples in their natural aqueous environment. SPM can also be used to evaluate mechanical properties because its probe is physically in contact with the samples during measurement. To obtain cellular stiffness with SPM, we have proposed two methods: a force modulation mode and a force mapping mode. Considering the influence of the drag force of liquids, we have successfully improved the quantitative evaluation of cellular stiffness by using the force modulation mode. Experiments performed using the two methods revealed that the local stiffness of fibroblasts was not homogeneous on the cell surface but largely varied from point to point. It was revealed that spatial and temporal distributions of cellular stiffness originate in cytoskeletal distribution, mode of cellular migration, and intracellular contractile force.
Keywords: Scanning probe microscopy, Viscoelasticity, Force modulation mode, Force mapping mode, Cell mechanics, Fibroblast