Abstract
Over the past three decades, the Isolated Perfused Rat Kidney (IPK) has been used to study numerous aspects of renal drug disposition. Among the available ex-vivo methods to study renal transport, the IPK allows for elucidation of the overall contributions of renal transport mechanisms on drug excretion. Therefore, IPK studies can provide a bridge between in vitro findings and in vivo disposition. This review paper begins with a detailed overview of IPK methodology (system components, surgical procedure, study design). Various applications of the IPK are then presented. These applications include characterizing renal excretion mechanisms, screening for clinically significant drug interactions, studying renal drug metabolism, and correlating renal drug disposition with drug-induced changes in kidney function. Lastly, the role of IPK studies in drug development is discussed. Demonstrated correlations between IPK data and clinical outcomes make the IPK model a potentially useful tool for drug discovery and evaluation.
Keywords: isolated perfused kidney, renal excretion
Current Drug Discovery Technologies
Title: The Isolated Perfused Rat Kidney Model: A Useful Tool for Drug Discovery and Development
Volume: 1 Issue: 1
Author(s): David R. Taft
Affiliation:
Keywords: isolated perfused kidney, renal excretion
Abstract: Over the past three decades, the Isolated Perfused Rat Kidney (IPK) has been used to study numerous aspects of renal drug disposition. Among the available ex-vivo methods to study renal transport, the IPK allows for elucidation of the overall contributions of renal transport mechanisms on drug excretion. Therefore, IPK studies can provide a bridge between in vitro findings and in vivo disposition. This review paper begins with a detailed overview of IPK methodology (system components, surgical procedure, study design). Various applications of the IPK are then presented. These applications include characterizing renal excretion mechanisms, screening for clinically significant drug interactions, studying renal drug metabolism, and correlating renal drug disposition with drug-induced changes in kidney function. Lastly, the role of IPK studies in drug development is discussed. Demonstrated correlations between IPK data and clinical outcomes make the IPK model a potentially useful tool for drug discovery and evaluation.
Export Options
About this article
Cite this article as:
Taft R. David, The Isolated Perfused Rat Kidney Model: A Useful Tool for Drug Discovery and Development, Current Drug Discovery Technologies 2004; 1 (1) . https://dx.doi.org/10.2174/1570163043484824
DOI https://dx.doi.org/10.2174/1570163043484824 |
Print ISSN 1570-1638 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6220 |
Related Books

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements