Abstract
A role for the actin cytoskeleton in retrovirus assembly has long been speculated. However, specific mechanisms by which actin facilitates the assembly process remain elusive. We previously demonstrated differential effects of experimentally modified actin dynamics on virion production of equine infectious anemia virus (EIAV), a lentivirus related to HIV-1, suggesting an involvement of actin dynamics in retrovirus production. In the current study, we used bimolecular fluorescence complementation (BiFC) to reveal intimate ( < 15nm) and specific associations between EIAV Gag and actin, but not tubulin. Specific interaction between Gag and filamentous actin was also demonstrated by co-immunoprecipitation experiments combined with the actin severing protein gelsolin to solubilize F-actin. Deletion of capsid (CA) or nucleocapsid (NC) genes reduced Gag association with F-actin by 40% and 95%, respectively. Interestingly, GCN4, a leucine zipper motif, could substitute for the NC domain in mediating F-actin association. Furthermore, deficiency of the ΔNC Gag in F-actin interaction was restored upon co-expression of Gag constructs containing both CA and NC or the GCN4, suggesting a requirement for Gag polyprotein multimerization prior to F-actin association. The observed Gag-F-actin association appeared to correlate with viral budding, as enhanced budding of the ΔNC mutant was evident upon restoration of F-actin association. Intracellular association of Gag complexes with F-actin was also detected by immunoscanning electro n microscopy of Triton-extracted EIAV-infected cells. Together, these data suggest that Gag multimers induced by CA and NC domains interact with F-actin and that this association is important for efficient virion production.
Keywords: Actin cytoskeleton, assembly, lentivirus, protein-protein interaction, trafficking, BiFC