Abstract
In the past several years nuclear magnetic resonance (NMR) spectroscopy has emerged as a valuable tool in the drug discovery field. In such context, several NMR-based techniques have been developed aimed at the identification and subsequent optimization of novel binders for a given protein target. Among the different NMR approaches, those relying on the transferred Nuclear Overhauser Effect (tr-NOE) appear to be particularly useful as in some instances, in addition to binding, tr-NOE may provide also structural information on the binding mode of a ligand. In the current work we will reiterate the basic principles and applications that are related to measurements of tr-NOEs. The tr-NOE can be applied as a screening tool to recognize ligands for a given target protein in a mixture of compounds or to identify pair of molecules that bind to a protein simultaneously on adjacent sites (interligand NOEs). Moreover, in the case of peptide-ligands, tr- NOEs furnish intra-molecular distance constraints that can be used to determine their bioactive conformation. Starting from the conformation thus obtained, a pharmacophoric model can be derived and later used to search within a 3D database of small molecules to find new potentially active non-peptide compounds that fit the pharmacophore. We will report examples of each of the above mentioned strategies.
Keywords: NMR-based approaches, Saturation Transfer Difference (STD), Interligand NOEs, software DYANA, drug discovery
Current Drug Discovery Technologies
Title: The Nuclear Overhauser Effect in the Lead Identification Process Pharmacophore Models
Volume: 3 Issue: 2
Author(s): Marilisa Leone, Hudson H. Freeze, Chui Sien Chan and Maurizio Pellecchia
Affiliation:
Keywords: NMR-based approaches, Saturation Transfer Difference (STD), Interligand NOEs, software DYANA, drug discovery
Abstract: In the past several years nuclear magnetic resonance (NMR) spectroscopy has emerged as a valuable tool in the drug discovery field. In such context, several NMR-based techniques have been developed aimed at the identification and subsequent optimization of novel binders for a given protein target. Among the different NMR approaches, those relying on the transferred Nuclear Overhauser Effect (tr-NOE) appear to be particularly useful as in some instances, in addition to binding, tr-NOE may provide also structural information on the binding mode of a ligand. In the current work we will reiterate the basic principles and applications that are related to measurements of tr-NOEs. The tr-NOE can be applied as a screening tool to recognize ligands for a given target protein in a mixture of compounds or to identify pair of molecules that bind to a protein simultaneously on adjacent sites (interligand NOEs). Moreover, in the case of peptide-ligands, tr- NOEs furnish intra-molecular distance constraints that can be used to determine their bioactive conformation. Starting from the conformation thus obtained, a pharmacophoric model can be derived and later used to search within a 3D database of small molecules to find new potentially active non-peptide compounds that fit the pharmacophore. We will report examples of each of the above mentioned strategies.
Export Options
About this article
Cite this article as:
Leone Marilisa, Freeze H. Hudson, Sien Chan Chui and Pellecchia Maurizio, The Nuclear Overhauser Effect in the Lead Identification Process Pharmacophore Models, Current Drug Discovery Technologies 2006; 3 (2) . https://dx.doi.org/10.2174/157016306778108884
DOI https://dx.doi.org/10.2174/157016306778108884 |
Print ISSN 1570-1638 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6220 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Unleashing the Potential of Microbial Natural Products in Drug Discovery: Focusing on <i>Streptomyces</i> as Antimicrobials Goldmine
Current Topics in Medicinal Chemistry Resveratrol and Lifespan in Model Organisms
Current Medicinal Chemistry Purification of Transcription Factors and Identification with Mass Spectrometry
Current Analytical Chemistry Single-Molecule Spectroscopy for Nucleic Acid Analysis: A New Approach for Disease Detection and Genomic Analysis
Current Pharmaceutical Biotechnology The Effects of Maternally Administered Methadone, Buprenorphine and Naltrexone on Offspring: Review of Human and Animal Data
Current Neuropharmacology Multi-Target Mining of Alzheimer Disease Proteome with Hansch’s QSBR-Perturbation Theory and Experimental-Theoretic Study of New Thiophene Isosters of Rasagiline
Current Drug Targets Impedance based Microfluidic Biosensor for Cell Study
Micro and Nanosystems Different Methods for Molecular and Rapid Detection of Human Novel Coronavirus
Current Pharmaceutical Design Antidyslipidemic Capacity of <i>Cleome arabica</i> (L.) in Streptozotocin-Induced Diabetic Rats
Cardiovascular & Hematological Agents in Medicinal Chemistry Role of Vitamins in Human Health and Nutrition: Sources and Morbidity
Current Nutrition & Food Science Bioinformatic Tools Identify Chromosome-Specific DNA Probes and Facilitate Risk Assessment by Detecting Aneusomies in Extra-embryonic Tissues
Current Genomics Herpes Simplex Encephalitis: From Virus to Therapy
Infectious Disorders - Drug Targets Molecular Diversity of Seed-borne Fusarium Species Associated with Maize in India
Current Genomics Mutations of mtDNA in some Vascular and Metabolic Diseases
Current Pharmaceutical Design Synthesis, Antioxidant and Antitumor Activity of Some Substituted 9-Anilinoacridine and 4-Anilinoquinolines Derivatives
Current Organic Synthesis Targeting Natural Products for the Treatment of COVID-19 – An Updated Review
Current Pharmaceutical Design Discovery of New Biomarkers of Cancer Using Proteomics Technology
Current Cancer Therapy Reviews Current and Potential Use of Citrus Essential Oils
Current Organic Chemistry Radix Astragali (Astragalus): Latest Advancements and Trends in Chemistry, Analysis, Pharmacology and Pharmacokinetics
Current Organic Chemistry Development and Applications of Fluorescent Oligonucleotides
Current Organic Chemistry