Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

CoMFA and CoMSIA Analyses of Highly Selective Pipecolic Acid Based TNF-α Converting Enzyme (TACE) Inhibitors Using Docked Conformations for Molecular Alignment

Author(s): Malkeet Singh Bahia, Sukhvir Chand, Shravan Kumar Gunda, Shwetha Reddy Gade, Saikh Mahmood and Om Silakari

Volume 8, Issue 5, 2011

Page: [430 - 439] Pages: 10

DOI: 10.2174/157018011795514195

Price: $65

Abstract

Molecular modeling (MM) study is performed for Pipecolic acid based derivatives (PSAs) of tumor necrosis factor-α converting enzyme (TACE) inhibitors because of their very high selectivity for TACE over MMP-1. MM study was carried out by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular field Similarity Indices Analysis (CoMSIA) approaches. Computational docking simulations have also been performed to explore atomic details of TACE/PSA interactions and to identify the most important structural features of PSAs vital for TACE inhibitory activity. Molecular modeling study was performed using probable bioactive conformations, generated employing docking, for molecular alignment. The CoMSIA model resulted to be more predictive than CoMFA model, and gave conventional r2 0.996, r2cv 0.765, q2 0.783, SEE 0.025, F-value 472.149, r2boot 0.999 and r2test 0.788. Generated 3D-QSAR field contributions (contour maps) and results of docking analysis showed good correlation. Therefore, present studies will be useful for designing new molecules with improved TACE inhibitory activity in future.

Keywords: TACE inhibitors, Rheumatoid arthritis, CoMFA, CoMSIA, Docking, Converting Enzyme, Pipecolic Acid, TNF, necrosis, PSA, 3D-QSAR, cytokine, metalloproteinases, fusion


© 2025 Bentham Science Publishers | Privacy Policy