Abstract
The relaxin peptide family in humans consists of seven members, relaxin-1, -2 and -3 and insulin- like (INSL) peptides 3, 4, 5 and 6. It is an offshoot of the large insulin superfamily. Each member consists of two chains, commonly referred to as A and B, which are held together by two inter-chain disulfide bonds and another intra-chain disulfide bond present within the A chain. The cysteine residues present in each chain, together with the distinctive disulfide bonding pattern, are conserved across all members of the superfamily. The chemical synthesis of these complex peptides poses a significant challenge. In the past, random combination of the two synthetic S-reduced chains under oxidizing conditions was utilized to form the three disulfide bonds. Nowadays, with the aid of highly efficient solid phase peptide synthesis methodologies, in conjunction with selective S- thiol-protecting groups, combination of individual A- and B- chains by sequential chemical formation of each of the three disulfide bonds is now possible resulting in good yields of these peptides. The relaxin peptide family members bind to G- protein coupled receptors (GPCRs) which have been classified as relaxin family peptide (RXFP) receptors. The various unique receptor-ligand interactions are outlined in this review, together with the physiological roles of the relaxin peptide family members and lastly their past and present clinical applications.
Keywords: Relaxin, structure, chemical synthesis, function, clinical applicationsRelaxin, structure, chemical synthesis, function, clinical applications