Abstract
The present study is aimed to determine the role of Ca2+ signaling evoked by hydrogen peroxide (H2O2) on caspase activation in human leukemia cell line HL-60. We have analysed cytosolic free Ca2+ concentration ([Ca2+]c) determination, mitochondrial membrane potential and caspase-3 and -9 activity by fluorimetric methods, using the fluorescent ratiometric Ca2+ indicator Fura-2, the dye JC-1, and specific fluorogenic substrate, respectively. Our results indicated that treatment of HL-60 cells with H2O2 induced a transient increase in [Ca2+]c due to Ca2+ release from internal stores. The stimulatory effect of H2O2 on Ca2+ signal was followed by a mitochondrial membrane depolarization. Our results also indicated that H2O2 was able to increase the caspase-3 and -9 activities. The effect of H2O2 on caspase activation was time dependent, reaching a maximal caspase activity after 120 min of stimulation. Loading of cells with dimethyl BAPTA, an intracellular Ca2+ chelator, significantly reduced H2O2-induced mitochondrial depolarization and caspase activation. Similar results were obtained when the cells were pretreated with Ru360, a specific blocker of Ca2+ uptake into mitochondria. The findings suggest that H2O2-induced caspase-3 and -9 activation and mitochondrial membrane depolarization is dependent on rises in [Ca2+]c in human myeloid HL-60 cells.
Keywords: Apoptosis, caspases, Ca2+ signal, hydrogen peroxide, HL-60 cells
Current Signal Transduction Therapy
Title: Oxidative Stress-Induced Caspases are Regulated in Human Myeloid HL-60 Cells by Calcium Signal
Volume: 5 Issue: 2
Author(s): D. Gonzalez, I. Bejarano, C. Barriga, A.B. Rodriguez and J.A. Pariente
Affiliation:
Keywords: Apoptosis, caspases, Ca2+ signal, hydrogen peroxide, HL-60 cells
Abstract: The present study is aimed to determine the role of Ca2+ signaling evoked by hydrogen peroxide (H2O2) on caspase activation in human leukemia cell line HL-60. We have analysed cytosolic free Ca2+ concentration ([Ca2+]c) determination, mitochondrial membrane potential and caspase-3 and -9 activity by fluorimetric methods, using the fluorescent ratiometric Ca2+ indicator Fura-2, the dye JC-1, and specific fluorogenic substrate, respectively. Our results indicated that treatment of HL-60 cells with H2O2 induced a transient increase in [Ca2+]c due to Ca2+ release from internal stores. The stimulatory effect of H2O2 on Ca2+ signal was followed by a mitochondrial membrane depolarization. Our results also indicated that H2O2 was able to increase the caspase-3 and -9 activities. The effect of H2O2 on caspase activation was time dependent, reaching a maximal caspase activity after 120 min of stimulation. Loading of cells with dimethyl BAPTA, an intracellular Ca2+ chelator, significantly reduced H2O2-induced mitochondrial depolarization and caspase activation. Similar results were obtained when the cells were pretreated with Ru360, a specific blocker of Ca2+ uptake into mitochondria. The findings suggest that H2O2-induced caspase-3 and -9 activation and mitochondrial membrane depolarization is dependent on rises in [Ca2+]c in human myeloid HL-60 cells.
Export Options
About this article
Cite this article as:
Gonzalez D., Bejarano I., Barriga C., Rodriguez A.B. and Pariente J.A., Oxidative Stress-Induced Caspases are Regulated in Human Myeloid HL-60 Cells by Calcium Signal, Current Signal Transduction Therapy 2010; 5 (2) . https://dx.doi.org/10.2174/157436210791112172
DOI https://dx.doi.org/10.2174/157436210791112172 |
Print ISSN 1574-3624 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-389X |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Potential Strategies for Minimizing Mechanism-Based Inhibition of Cytochrome P450 3A4
Current Pharmaceutical Design Antiepileptic Treatment Strategy in Vascular Malformations
Current Pharmaceutical Design Histamine H<sub>4</sub> Receptor Antagonists: A New Approach for Tinnitus Treatment?
Recent Patents on CNS Drug Discovery (Discontinued) Pleiotropic, Cardioprotective Effects of Omega-3 Polyunsaturated Fatty Acids
Mini-Reviews in Medicinal Chemistry <i>Cannabis Sativa</i> L. Flower and Bud Extracts Inhibited <i>In vitro</i> Cholinesterases and β-Secretase Enzymes Activities: Possible Mechanisms of Cannabis Use in Alzheimer Disease
Endocrine, Metabolic & Immune Disorders - Drug Targets Some Highlights on Epileptic EEG Processing
Recent Patents on Biomedical Engineering (Discontinued) Synthesis and Anticonvulsant Activity Evaluation of 4-butyl-5-(4- alkoxyphenyl)-2H-1,2,4-triazole-3(4H)-ones
Letters in Drug Design & Discovery Engineered Probiotic and Prebiotic Nutraceutical Supplementations in Combating Non-communicable Disorders: A Review
Current Pharmaceutical Biotechnology Ifenprodil, a Novel NMDA Receptor Antagonist : Site and Mechanism of Action
Current Drug Targets A Randomized, Double-Blind, Placebo-Controlled Pilot Trial of Safety and Tolerability of Two Doses of Divalproex Sodium in Outpatients with Probable Alzheimers Disease
Current Alzheimer Research Editorial (Thematic Issue: Current Research on Cannabis Use Disorder)
Current Pharmaceutical Design Recent Updates of N-Type Calcium Channel Blockers with Therapeutic Potential for Neuropathic Pain and Stroke
Current Topics in Medicinal Chemistry Primary and Secondary Insomnia: Prevalence, Causes and Current Therapeutics
Current Medicinal Chemistry - Central Nervous System Agents In Silico Validation and Structure Activity Relationship Study of a Series of Pyridine-3-carbohydrazide Derivatives as Potential Anticonvulsants in Generalized and Partial Seizures
Central Nervous System Agents in Medicinal Chemistry The Role of Microbiota and Intestinal Permeability in the Pathophysiology of Autoimmune and Neuroimmune Processes with an Emphasis on Inflammatory Bowel Disease Type 1 Diabetes and Chronic Fatigue Syndrome
Current Pharmaceutical Design Pharmacological Approaches Targeting Brain Cell Survival in the Context of Neurodegeneration and Potential Treatment Strategies
Current Neuropharmacology Subject Index To Volume 2
Current Rheumatology Reviews Recent Highlights on Molecular Hybrids Potentially Useful in Central Nervous System Disorders
Mini-Reviews in Medicinal Chemistry Strategies to Improve the Killing of Tumors Using Temozolomide: Targeting the DNA Repair Protein MGMT
Current Medicinal Chemistry Mitochondrial Disorders in Adults
Current Molecular Medicine