Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Chiral Perazamacrocycles: Synthesis and Applications. Part 2

Author(s): D. Savoia and A. Gualandi

Volume 6, Issue 2, 2009

Page: [119 - 142] Pages: 24

DOI: 10.2174/157017909788167266

Price: $65

Abstract

The formation of chiral non-racemic perazamacrocyles containing three or more nitrogen atoms in the form of identical of different functionalities can be achieved by diverse methodologies which usually exploit the sequential formation of carbon-nitrogen bonds by reaction of nucleophilic nitrogen functions with electrophilic compounds. The rigidity and restricted flexibility of the reaction partners is generally a requisite for the successful cyclization, which can be alternatively accomplished by the use of a metal template. The carbon stereocenters in the formed macrocycle are generally present in the starting nitrogen-containing reagent, e.g. amine, diamine, α- aminoacid and their derivatives. Intrinsically chiral porphyrins, lacking carbon stereocenters, have been also prepared. Chiral perazamacrocycles and their metal complexes have found applications in the fields of biomedical research, diagnosis, anion sensing, molecular recognition, enantiomeric discrimination, asymmetric catalysis, and material chemistry.

Keywords: Asymmetric catalysis, cyclization, enantioselective recognition, metal complexes, perazamacrocycles, porphyrins, supramolecular chemistry


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy