Abstract
Heat stress on structure and ligand binding of β-LG has been studied by fluorescence, circular dichroism and gel electrophoresis at pH 6.5. Native PAGE gel electrophoresis shows that denaturation of β-LG is reversible up to 75°C then it becomes irreversible due to aggregation of β-LG. Formation of aggregated β-LG is completed at 95°C. Circular dichroism results indicate that formation of aggregated β-LG is accompanied by the scrambling of disulfide bonds (creation of new intramolecular and intermolecular disulfide bridges and rearrangement of old intramolecular disulfide bridges). Addition of ethanolic retinol causes a change in polarity of the solution and favors transformation of the βα structure. In the presence of retinol, the β-helix content of the secondary structure of heat-treated β-LG is increased and the major portion of its secondary structure is helical. Fluorescence results show that heat-treated β-LG at 95°C can still bind retinol. The refolding of the tertiary structure of β-LG heat-denatured at 95°C may recreate a retinol binding site. Surprisingly, the affinity of the new site for retinol is higher than that of native β-LG; however, the apparent molar ratio is lower than one. The binding properties of β-LG for terpenoids have been measured after its heat treatment at 20, 75 and 95°C. The intensity of tryptophan emission at 330 nm was changed only in the case of the interaction with β-ionone. Other ligands probably cannot bind to β-LG or they bind in a binding site far from the tryptophan residues, hence not affecting its fluorescence.
Keywords: β-lactoglobulin, retinol, terpenes, fluorescence, circular dichroism, gel electrophoresis
Protein & Peptide Letters
Title: Changes in Structure and in Interactions of Heat-Treated Bovine β-Lactoglobulin
Volume: 15 Issue: 8
Author(s): Seyed Habib-Allah Mousavi, Abdol-Khalegh Bordbar and Thomas Haertle
Affiliation:
Keywords: β-lactoglobulin, retinol, terpenes, fluorescence, circular dichroism, gel electrophoresis
Abstract: Heat stress on structure and ligand binding of β-LG has been studied by fluorescence, circular dichroism and gel electrophoresis at pH 6.5. Native PAGE gel electrophoresis shows that denaturation of β-LG is reversible up to 75°C then it becomes irreversible due to aggregation of β-LG. Formation of aggregated β-LG is completed at 95°C. Circular dichroism results indicate that formation of aggregated β-LG is accompanied by the scrambling of disulfide bonds (creation of new intramolecular and intermolecular disulfide bridges and rearrangement of old intramolecular disulfide bridges). Addition of ethanolic retinol causes a change in polarity of the solution and favors transformation of the βα structure. In the presence of retinol, the β-helix content of the secondary structure of heat-treated β-LG is increased and the major portion of its secondary structure is helical. Fluorescence results show that heat-treated β-LG at 95°C can still bind retinol. The refolding of the tertiary structure of β-LG heat-denatured at 95°C may recreate a retinol binding site. Surprisingly, the affinity of the new site for retinol is higher than that of native β-LG; however, the apparent molar ratio is lower than one. The binding properties of β-LG for terpenoids have been measured after its heat treatment at 20, 75 and 95°C. The intensity of tryptophan emission at 330 nm was changed only in the case of the interaction with β-ionone. Other ligands probably cannot bind to β-LG or they bind in a binding site far from the tryptophan residues, hence not affecting its fluorescence.
Export Options
About this article
Cite this article as:
Mousavi Habib-Allah Seyed, Bordbar Abdol-Khalegh and Haertle Thomas, Changes in Structure and in Interactions of Heat-Treated Bovine β-Lactoglobulin, Protein & Peptide Letters 2008; 15 (8) . https://dx.doi.org/10.2174/092986608785203700
DOI https://dx.doi.org/10.2174/092986608785203700 |
Print ISSN 0929-8665 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5305 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers