Abstract
Advanced glycation end products (AGEs) are formed from the non-enzymatic reaction between reducing sugars and amine residues on proteins, lipoproteins or nucleic acids. AGEs are found on long-lived proteins and their tissue accumulation is associated with normal ageing. The formation of AGEs can be accelerated in certain pathological conditions such as diabetes where hyperglycaemia is present. AGE modification of proteins can lead to alterations of normal function by binding to intracellular or extracellular cell components, or through receptor binding. This consequently can initiate a cascade of events, which includes the activation of signal transduction pathways, which activate inflammatory responses causing tissue damage. Such tissue injury contributes to the development of microvascular complications and is of particular relevance in diabetes where interventions to reduce the accumulation of AGEs is desirable.
Keywords: superoxide dismutase, hyperglycaemia, reactive oxygen species, type 2 diabetes, AGE receptors