Abstract
Overexpression of the leucine-rich, glioma-inactivated 1 (LGI1) gene in neuroblastoma cells inhibited proliferation and efficiently induced apoptosis. Cell clones stably transfected with LGI1 cDNA showed greater mortality during a period of serum starvation in comparison with control cells stably transfected with empty vector. This observation suggested hindrance of the PI3K/Akt pathway, a central transducer of survival stimuli elicited by serum growth factors. Treatment with inhibitors of PI3K significantly increased the death of control cells but substantially failed to influence LGI1 cell death, which was greatest independently of the presence of inhibitors. Blockage of the PI3K/Akt pathway in LGI1 cells was confirmed by the lack of serum-induced Akt phosphorylation, in contrast with the strong response of control cells. Instead, serum-induced phosphorylation of ERK1/2 was not impaired by the expression of LGI1. This study showed that overexpression of LGI1 caused neuroblastoma cell death by blocking activation of the PI3K/Akt pathway. Thus, the possibility of upregulating LGI1 expression may be a novel strategy in suppressing oncogenesis and metastasis sustained by excessive activation of the PI3K/Akt pathway.
Keywords: Neuroblastoma, leucine-rich, glioma-inactivated 1 (LGI1), phosphoinositide 3-kinase (PI3K), cell death
Current Signal Transduction Therapy
Title: LGI1 Affects Survival of Neuroblastoma Cells by Inhibiting Signalling through Phosphoinositide 3-Kinase
Volume: 3 Issue: 2
Author(s): Nadia Gabellini and Valentina Masola
Affiliation:
Keywords: Neuroblastoma, leucine-rich, glioma-inactivated 1 (LGI1), phosphoinositide 3-kinase (PI3K), cell death
Abstract: Overexpression of the leucine-rich, glioma-inactivated 1 (LGI1) gene in neuroblastoma cells inhibited proliferation and efficiently induced apoptosis. Cell clones stably transfected with LGI1 cDNA showed greater mortality during a period of serum starvation in comparison with control cells stably transfected with empty vector. This observation suggested hindrance of the PI3K/Akt pathway, a central transducer of survival stimuli elicited by serum growth factors. Treatment with inhibitors of PI3K significantly increased the death of control cells but substantially failed to influence LGI1 cell death, which was greatest independently of the presence of inhibitors. Blockage of the PI3K/Akt pathway in LGI1 cells was confirmed by the lack of serum-induced Akt phosphorylation, in contrast with the strong response of control cells. Instead, serum-induced phosphorylation of ERK1/2 was not impaired by the expression of LGI1. This study showed that overexpression of LGI1 caused neuroblastoma cell death by blocking activation of the PI3K/Akt pathway. Thus, the possibility of upregulating LGI1 expression may be a novel strategy in suppressing oncogenesis and metastasis sustained by excessive activation of the PI3K/Akt pathway.
Export Options
About this article
Cite this article as:
Gabellini Nadia and Masola Valentina, LGI1 Affects Survival of Neuroblastoma Cells by Inhibiting Signalling through Phosphoinositide 3-Kinase, Current Signal Transduction Therapy 2008; 3 (2) . https://dx.doi.org/10.2174/157436208784223125
DOI https://dx.doi.org/10.2174/157436208784223125 |
Print ISSN 1574-3624 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-389X |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Radiosensitizing Effect of Olanzapine as an Antipsychotic Medication
on Glioblastoma Cell
Current Radiopharmaceuticals Cell Cycle and Cancer: The G1 Restriction Point and the G1 / S Transition
Current Genomics The Blood Brain Barrier, Mechanisms of Cerebral Edema, and the Use of Anti-Inflammatory and other Anti-Edema Agents in Neuro-Oncology
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Cellular Immunotherapy for Neuroblastoma: A Review of Current Vaccine and Adoptive T Cell Therapeutics
Current Pharmaceutical Design Relevance of the Deletion Polymorphisms of the Glutathione S-Transferases GSTT1 and GSTM1 in Pharmacology and Toxicology
Current Drug Metabolism Modulation of Cellular Function by TAT Mediated Transduction of Full Length Proteins
Current Protein & Peptide Science Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke
Current Neuropharmacology Cdc25A Protein Phosphatase: A Therapeutic Target for Liver Cancer Therapies
Anti-Cancer Agents in Medicinal Chemistry Lectins in Human Cancer: Both a Devil and an Angel?
Current Protein & Peptide Science Targeting Transcription Factor Binding to DNA by Competing with DNA Binders as an Approach for Controlling Gene Expression
Current Topics in Medicinal Chemistry Cannabinoids: Occurrence and Medicinal Chemistry
Current Medicinal Chemistry Ferroptosis: A Trusted Ally in Combating Drug Resistance in Cancer
Current Medicinal Chemistry Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery
Recent Patents on Inflammation & Allergy Drug Discovery Phosphorothioate Oligonucleotides: Effectiveness and Toxicity
Current Drug Targets Sunlight Vitamin D and Skin Cancer
Anti-Cancer Agents in Medicinal Chemistry Preparation and <I>In Vitro/Vivo</I> Evaluation of Folate-conjugated Pluronic F87-PLGA/TPGS Mixed Nanoparticles for Targeted Drug Delivery
Current Drug Delivery The Chemical Defensive System in the Pathobiology of Idiopathic Environment- Associated Diseases
Current Drug Metabolism Recent Advances in the Development of MMPIs and APNIs Based on the Pyrrolidine Platforms
Mini-Reviews in Medicinal Chemistry Plants vs. Cancer: A Review on Natural Phytochemicals in Preventing and Treating Cancers and Their Druggability
Anti-Cancer Agents in Medicinal Chemistry Protein Secretome Analysis of Evolving and Responding Tumor Ecosystems
Current Proteomics