Abstract
Although the use of stem cells in cell-replacement therapies by transplantation is obvious, another equally important and interesting application of stem cells is to use them in disease modeling. Disease models serve as a platform to dissect the biochemical mechanisms of normal phenotypes and the processes which go awry during disease conditions. Particularly in complex, multigenic diseases, molecular studies lead to a greater understanding of the disease, and perhaps more targeted approaches for therapies. Stem cells provide an ideal in vitro system in which to study events related to development at the molecular and cellular level. Neural stem cells have been used as excellent models to study the mechanisms of differentiation of cells of the central nervous system. These studies may be particularly relevant to diseases of complex etiology such as psychiatric illnesses, neurodegenerative diseases and brain tumors. Stem cell-derived systems are also being developed to create models of cardiovascular disease. The application of stem cells to the study of cardiovascular illnesses, and vertebrate heart development, is discussed.
Keywords: Stem cells, embryonic, neural, cardiac, autism, glioma