Abstract
The largest circular protein structures discovered define a class of transfer proteins acting in bacterial conjugation and type IV secretion. Proteins ranging from 73 to 78 residues with head-to-tail peptide bonds constitute the major subunit of conjugative pili of some type IV secretion systems. Their plasmid-encoded precursors are enzymatically processed and cyclized before being assembled into pili. These extra-cellular surface filaments mediate physical contact between donor and recipient cell or pathogen and host cell. Pili are essential prerequisites for DNA and protein transfer. A membrane-bound signal peptidase-like enzyme is responsible for the circularization reaction. Site-directed mutagenesis and mass spectrometry has been used extensively to unravel the mechanism of the enzyme-substrate interaction of the pilin maturation process.
Keywords: protein circlets, sex pilus subunits, type IV secretion systems, enzyme-substrate interaction