Abstract
The local fluorescence probes, 2-(p-toluidino)-6-naphthalenesulfonic acid (TNS) and NADPH were employed to detect urea-induced conformation changes at each active site of dihydrofolate reductase (DHFR), respectively. The results indicate that local conformation change at DHF/TNS could be superimposed by the conformation change calculated from the enzyme activity change with a three-state model; while at NADPH site it is lagged in the first transition. This difference is further supported by the different relative changes of Michaelis constants at 0, 1 and 1.8 M urea for each substrate. Our results suggest that local conformation at DHF site is more flexible than that at NADPH site, and the urea-induced unfolding could be ascribed to a four-state transition.
Keywords: dhfr, tns, urea, fluorescence, activation mechanism, unfolding mechanism