Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Oxidative Stress: The Old Enemy in Alzheimers Disease Pathophysiology

Author(s): Paula I. Moreira, Kazuhiro Honda, Quan Liu, Maria S. Santos, Catarina R. Oliveira, Gjumrakch Aliev, Akihiko Nunomura, Xiongwei Zhu, Mark A. Smith and George Perry

Volume 2, Issue 4, 2005

Page: [403 - 408] Pages: 6

DOI: 10.2174/156720505774330537

Price: $65

Abstract

The complex nature and genesis of oxidative damage in Alzheimer disease can be partly answered by mitochondrial and redox-active metal abnormalities. By releasing high levels of hydrogen peroxide, dysfunctional mitochondria propagate a series of interactions between redox-active metals and oxidative response elements. In the initial phase of disease development, amyloid-β deposition and hyperphosphorylated t may function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative injuries. However, during the progression of the disease, the antioxidant activity of both agents evolves into pro-oxidant activity representing a typical gain-offunction transformation, which can result from an increase in reactive species and a decrease in clearance mechanisms.

Keywords: alzheimer disease, amyloid-b, metal, mitochondria, oxidative stress


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy