Abstract
Pharmacophore mapping is one of the major elements of drug design in the absence of structural data of the target receptor. The tool initially applied to discovery of lead molecules now extends to lead optimization. Pharmacophores can be used as queries for retrieving potential leads from structural databases (lead discovery), for designing molecules with specific desired attributes (lead optimization), and for assessing similarity and diversity of molecules using pharmacophore fingerprints. It can also be used to align molecules based on the 3D arrangement of chemical features or to develop predictive 3D QSAR models. This review begins with a brief historical overview of the pharmacophore evolution followed by a coverage of the developments in methodologies for pharmacophore identification over the period from inception of the pharmacophore concept to recent developments of the more sophisticated tools such as Catalyst, GASP, and DISCO. In addition, we present some very recent successes of the widely used pharmacophore generation methods in drug discovery.
Keywords: Pharmacophore modeling, fingerprints, virtual screening, database search