Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Pharmacokinetic and Metabolism Determinants of Fluoropyrimidines and Oxaliplatin Activity in Treatment of Colorectal Patients

Author(s): Antonio Gnoni, Antonio Russo, Nicola Silvestris, Evaristo Maiello, Angelo Vacca, Ilaria Marech, Gianmauro Numico, Angelo Paradiso, Vito Lorusso and Amalia Azzariti

Volume 12, Issue 10, 2011

Page: [918 - 931] Pages: 14

DOI: 10.2174/138920011798062300

Price: $65

Abstract

Fluoropyrimidines and oxaliplatin continued to be the mainstay of therapeutic regimens in the treatment of colorectal cancer (CRC). For this reason, pharmacokinetic and metabolism of these drugs were analyzed and the identification of accurate and validated predictive, prognostic and toxicity markers became necessary to develop an effective therapy adapted to the patients molecular profile, while minimizing life-threatening toxicities. In this review, we discuss literature data, defining predictive and prognostic markers actually identified in the treatment of CRC. We analyzed predictive markers of fluoropyrimidines effectiveness, principally for 5-Fluorouracil (5- FU) and also for oral fluoropyrimidines, as thymidylate Synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyl transferase (OPRT), methylenetetrahydrofolate reductase (MTHFR), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), microsatellite instability. DPD represent the more studied 5-FU toxicity marker, followed by TS and OPRT. Oxaliplatin effectiveness is principally regulated by nucleotide excision repair (NER) pathway, including excision repair cross-complementation group 1 (ERCC1), X-ray cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XDP). The major oxaliplatin toxicity marker is represented by glutathione S-transferase (GST). All these results are based principally on retrospective studies. The future challenge became to validate molecular markers and their association with clinical outcomes in prospective trials, refining technologic platforms and bioinformatics to accommodate the complexity of the multifaceted molecular map that may determine outcome, and determining CRC patients most likely to benefit from therapeutic interventions tailored specifically for them.

Keywords: 5-Fluorouracil, dihydropyrimidine dehydrogenase, glutathione S-transferase, nucleotide excision repair, oxaliplatin, predictive marker, thymidylate synthase, toxicity marker, Fluoropyrimidines, colorectal cancer


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy