Abstract
In this work, the Fe3O4 magnetic nanoparticles with different shapes and average sizes of 15 to 180 nm were synthesized by an electrooxidation method, the size and shape of the particles were experimentally controlled by tuning the parameters of potential and electrolyte temperature, and its structure was conducted by XRD, forming the Fe3O4 phase. FT-IR confirmed that the stabilizer molecules can cover the particle surfaces. The resultant TEM and SEM showed that the particles have polycrystalline structure, and their size, shapes and surface morphology change dramatically under different potentials and temperatures. Also the particle size dependency was obtained by using UV-Vis spectroscopy, indicating that their maximum absorption wavelength and peak width decrease with increasing temperature and potential.
Keywords: Electrooxidation, Fe3O4 nanoparticles, Optical properties, Structural properties, SEM, TEM, UV-visible, XRDChronoamperometry technique, Electrostatic stabilization, FT-IR, Growth potential, Growth temperature, Surface Plasmon resonance
Current Nanoscience
Title: Effect of Growth Parameters on Structure of Electrooxidized Fe3O4 Magnetic Nanoparticles
Volume: 7 Issue: 5
Author(s): Iraj Kazeminezhad, Saba Mosivand and Mansoor Farbod
Affiliation:
Keywords: Electrooxidation, Fe3O4 nanoparticles, Optical properties, Structural properties, SEM, TEM, UV-visible, XRDChronoamperometry technique, Electrostatic stabilization, FT-IR, Growth potential, Growth temperature, Surface Plasmon resonance
Abstract: In this work, the Fe3O4 magnetic nanoparticles with different shapes and average sizes of 15 to 180 nm were synthesized by an electrooxidation method, the size and shape of the particles were experimentally controlled by tuning the parameters of potential and electrolyte temperature, and its structure was conducted by XRD, forming the Fe3O4 phase. FT-IR confirmed that the stabilizer molecules can cover the particle surfaces. The resultant TEM and SEM showed that the particles have polycrystalline structure, and their size, shapes and surface morphology change dramatically under different potentials and temperatures. Also the particle size dependency was obtained by using UV-Vis spectroscopy, indicating that their maximum absorption wavelength and peak width decrease with increasing temperature and potential.
Export Options
About this article
Cite this article as:
Kazeminezhad Iraj, Mosivand Saba and Farbod Mansoor, Effect of Growth Parameters on Structure of Electrooxidized Fe3O4 Magnetic Nanoparticles, Current Nanoscience 2011; 7 (5) . https://dx.doi.org/10.2174/157341311797483727
DOI https://dx.doi.org/10.2174/157341311797483727 |
Print ISSN 1573-4137 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6786 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers