Abstract
Nanotechnology and tissue engineering are promising scientific fields in the development of advanced materials useful to human health. This article describes the preparation of a nanocarrier for the controlled release of a photosensitizer compound associated with low-level light therapy for skin wound healing treatment and applicable to other skin diseases. A biological model was used as an in vitro skin equivalent based on a three-dimensional culture of fibroblasts and mesenchymal stem cells and denominated by dermal equivalent (DE). Results show that it is possible to use the photomodulation process to control the wound healing in a scratching process and to induce the biomolecules release, both of which are related with the inflammatory wound healing process. In the studies, the MMP-2 and MMP-9 expression from zymography analyses were evaluated. All results showed a dependence on enzymatic activity relating to lowlevel laser applications which indicates a potential application in wound healing processes based on phototherapy and nanotechnology.
Keywords: Dermal equivalents, mesenchymal stem cells, nanoemulsions, nanotechnology, phthalocyanine, tissue engineering, photodynamic process, human fibroblast, low-level laser therapy, matrix metalloproteinases