Abstract
A topological substructural molecular design approach (TOPS-MODE) has been used to formulate structural rules for binding of substrates of P-glycoprotein (P-gp). We first review some of the models developed in the recent literature for predicting binding to Pgp. Then, we develop a model using TOPS-MODE, which is able to identify 88.4% of substrates and 84.2% of non-substrates. When the model is presented to an external prediction set of 100 substrates and 77 nonsubstrates it identifies correctly 81.8% of all cases. Using TOPS-MODE strategy we found structural contributions for binding to P-gp, which identifies 24 structural fragments responsible for such binding. We then carried out a chemico-biological analysis of some of the structural fragments found as contributing to P-gp binding of substrates. We show that in general the model developed so far can be used as a virtual screening method for identifying substrates of P-gp from large libraries of compounds.
Keywords: TOPS-MODE, knowledge generation, P-glycoprotein, QSAR, molecular modeling, Spectral Moments, graph-theory descriptors, DEREK, TOPKAT, natural detoxification system, (MDRR), linear discriminant analysis (LDA), Automated Rule-Extraction, Randi, ’, s method, biophore, TSET, PSET, P-gp Efflux, MULTICASE, orthogonalization
Current Pharmaceutical Design
Title: Structural Contributions of Substrates to their Binding to P-Glycoprotein. A TOPSMODE Approach
Volume: 16 Issue: 24
Author(s): Ernesto Estrada, Enrique Molina, Delvin Nodarse and Eugenio Uriarte
Affiliation:
Keywords: TOPS-MODE, knowledge generation, P-glycoprotein, QSAR, molecular modeling, Spectral Moments, graph-theory descriptors, DEREK, TOPKAT, natural detoxification system, (MDRR), linear discriminant analysis (LDA), Automated Rule-Extraction, Randi, ’, s method, biophore, TSET, PSET, P-gp Efflux, MULTICASE, orthogonalization
Abstract: A topological substructural molecular design approach (TOPS-MODE) has been used to formulate structural rules for binding of substrates of P-glycoprotein (P-gp). We first review some of the models developed in the recent literature for predicting binding to Pgp. Then, we develop a model using TOPS-MODE, which is able to identify 88.4% of substrates and 84.2% of non-substrates. When the model is presented to an external prediction set of 100 substrates and 77 nonsubstrates it identifies correctly 81.8% of all cases. Using TOPS-MODE strategy we found structural contributions for binding to P-gp, which identifies 24 structural fragments responsible for such binding. We then carried out a chemico-biological analysis of some of the structural fragments found as contributing to P-gp binding of substrates. We show that in general the model developed so far can be used as a virtual screening method for identifying substrates of P-gp from large libraries of compounds.
Export Options
About this article
Cite this article as:
Estrada Ernesto, Molina Enrique, Nodarse Delvin and Uriarte Eugenio, Structural Contributions of Substrates to their Binding to P-Glycoprotein. A TOPSMODE Approach, Current Pharmaceutical Design 2010; 16 (24) . https://dx.doi.org/10.2174/138161210792389243
DOI https://dx.doi.org/10.2174/138161210792389243 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Resistance of Cancer Cells to Targeted Therapies Through the Activation of Compensating Signaling Loops
Current Signal Transduction Therapy Covid-19: An Update on Clinical Features, Diagnosis, and Treatment Strategies
Coronaviruses The Hedgehog Signaling Pathway as a Target for Anticancer Drug Discovery
Current Topics in Medicinal Chemistry New Zinc Binding Motifs in the Design of Selective Carbonic Anhydrase Inhibitors
Mini-Reviews in Medicinal Chemistry Pediatric Off-Label and Unlicensed Drug Use and Its Implications
Current Clinical Pharmacology Successful Applications of Computer Aided Drug Discovery: Moving Drugs from Concept to the Clinic
Current Topics in Medicinal Chemistry Natural Products as Anti-Cancerous Therapeutic Molecules Targeted towards Topoisomerases
Current Protein & Peptide Science Biologics for Extraintestinal Manifestations of IBD
Current Drug Targets Engineering Synergistically Active and Bioavailable Cost-effective Medicines for Neglected Tropical Diseases; The Role of Excipients
Current Topics in Medicinal Chemistry Stem Cells: An Overview of the Current Status of Therapies for Central and Peripheral Nervous System Diseases
Current Medicinal Chemistry Endothelial Dysfunction in Diabetes: From Mechanisms to Therapeutic Targets
Current Medicinal Chemistry Novel Patents and Cancer Therapies for Transforming Growth Factor- Beta and Urokinase Type Plasminogen Activator: Potential Use of Their Interplay in Tumorigenesis
Recent Patents on Anti-Cancer Drug Discovery Metabolomics and the Diagnosis of Human Diseases -A Guide to the Markers and Pathophysiological Pathways Affected
Current Medicinal Chemistry Microporation Techniques for Enhanced Delivery of Therapeutic Agents
Recent Patents on Drug Delivery & Formulation Biopolymer-based Scaffolds for Tissue Engineering Applications
Current Drug Targets Diabetic Retinopathy, Superoxide Damage and Antioxidants
Current Pharmaceutical Biotechnology 18F-fluoro-deoxy-D-glucose PET/CT in Establishing the Relationship Between the Metabolic Activity of Aorta and Iliac Artery Aneurysms in Cancer Patients
Current Medical Imaging The Role of Carrier Geometry in Overcoming Biological Barriers to Drug Delivery
Current Pharmaceutical Design Human Pluripotent Stem Cells for Modelling Human Liver Diseases and Cell Therapy
Current Gene Therapy Diverse Mechanisms of AKT Pathway Activation in Human Malignancy
Current Cancer Drug Targets