Abstract
Polyvinylidene fluoride (PVDF) nanocomposites with multiwalled carbon nanotubes (MWNTs), functionalized carbon nanotubes (FMWNTs) and nanofibers (CNFs) were fabricated via the solution processing route. The effect of temperature on the electrical conduction of PVDF-CNF, PVDF-MWNT, and PVDF-FMWNT nanocomposites was studied. The results showed that the DC conductivity of such nanocomposites at ambient temperature follows a percolation scaling law behavior. And the conductivity of nanocomposites tended to decrease with increasing temperature. Moreover, the current-voltage responses of these nanocomposites near the percolation threshold displayed nonlinear characteristics. This nonlinear behavior became more pronounced as the temperature was increased. The mechanism for nonlinearity of these nanocomposite systems is discussed.
Keywords: Electrical conductivity, nanocomposite, PVDF, carbon nanofibers, carbon nanotubes, MWNTs, FMWNTs, CNFs, PVDF-CNF, PVDF-MWNT, PVDF-FMWNT, actuators, Electro devices, polymer-CNT, Polymer CNF, nanofillers, DC conductivity, AC conductivity, j-E behaviors, percolating system
Current Nanoscience
Title: Effect of Temperature on Electrical Conduction Behavior of Polyvinylidene Fluoride Nanocomposites with Carbon Nanotubes and Nanofibers
Volume: 6 Issue: 5
Author(s): Lin-Xiang He and Sie-Chin Tjong
Affiliation:
Keywords: Electrical conductivity, nanocomposite, PVDF, carbon nanofibers, carbon nanotubes, MWNTs, FMWNTs, CNFs, PVDF-CNF, PVDF-MWNT, PVDF-FMWNT, actuators, Electro devices, polymer-CNT, Polymer CNF, nanofillers, DC conductivity, AC conductivity, j-E behaviors, percolating system
Abstract: Polyvinylidene fluoride (PVDF) nanocomposites with multiwalled carbon nanotubes (MWNTs), functionalized carbon nanotubes (FMWNTs) and nanofibers (CNFs) were fabricated via the solution processing route. The effect of temperature on the electrical conduction of PVDF-CNF, PVDF-MWNT, and PVDF-FMWNT nanocomposites was studied. The results showed that the DC conductivity of such nanocomposites at ambient temperature follows a percolation scaling law behavior. And the conductivity of nanocomposites tended to decrease with increasing temperature. Moreover, the current-voltage responses of these nanocomposites near the percolation threshold displayed nonlinear characteristics. This nonlinear behavior became more pronounced as the temperature was increased. The mechanism for nonlinearity of these nanocomposite systems is discussed.
Export Options
About this article
Cite this article as:
He Lin-Xiang and Tjong Sie-Chin, Effect of Temperature on Electrical Conduction Behavior of Polyvinylidene Fluoride Nanocomposites with Carbon Nanotubes and Nanofibers, Current Nanoscience 2010; 6 (5) . https://dx.doi.org/10.2174/157341310797575032
DOI https://dx.doi.org/10.2174/157341310797575032 |
Print ISSN 1573-4137 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6786 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers