Abstract
Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans, could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the “nature vs nurture” dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes “completed” so far. They may compound the variations associated to our epigenomes and make of each of us an “(epi)genomic” mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.
Keywords: Copy number variation, aneuploidy, genomics, epigenomics, transposons, retroposons
Current Genomics
Title: Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes
Volume: 11 Issue: 6
Author(s): P. A. Astolfi, F. Salamini and V. Sgaramella
Affiliation:
Keywords: Copy number variation, aneuploidy, genomics, epigenomics, transposons, retroposons
Abstract: Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans, could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the “nature vs nurture” dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes “completed” so far. They may compound the variations associated to our epigenomes and make of each of us an “(epi)genomic” mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.
Export Options
About this article
Cite this article as:
Astolfi A. P., Salamini F. and Sgaramella V., Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes, Current Genomics 2010; 11 (6) . https://dx.doi.org/10.2174/138920210793175949
DOI https://dx.doi.org/10.2174/138920210793175949 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Special Issue on Stem Cells: An Introduction from the Guest Editor
Current Neurovascular Research Lipid-based Nano-phytomedicines for Disease Treatment and Theranostic Applications
Current Nanomedicine Autophagic Dysfunction in Dementia: Scope for Development of Potential Remedies
CNS & Neurological Disorders - Drug Targets The Therapeutic Aspects of the Endocannabinoid System (ECS) for Cancer and their Development: From Nature to Laboratory
Current Pharmaceutical Design Circulating Advanced Oxidation Protein Products as Oxidative Stress Biomarkers and Progression Mediators in Pathological Conditions Related to Inflammation and Immune Dysregulation
Current Medicinal Chemistry A Synopsis on the Role of Tyrosine Hydroxylase in Parkinson’s Disease
CNS & Neurological Disorders - Drug Targets Neuroprotective Effects of Quercetin: From Chemistry to Medicine
CNS & Neurological Disorders - Drug Targets APP Transgenic Mouse Models and their Use in Drug Discovery to Evaluate Amyloid-β Lowering Therapeutics
CNS & Neurological Disorders - Drug Targets Yin and Yang of Polyphenols in Cancer Prevention: A Short Review
Anti-Cancer Agents in Medicinal Chemistry Metabolic Syndrome and Aging: Calcium Signaling as Common Regulator
Current Diabetes Reviews Editorial:A New Journal with an Integrated Approach in the Study of Aging and Longevity
Current Aging Science Micro Arrays and Biochips: Applications and Potential in Genomics and Proteomics
Current Genomics Potential Replication of Induced Pluripotent Stem Cells for Craniofacial Reconstruction
Current Stem Cell Research & Therapy Relationship Between Polymerase Gamma (POLG) Polymorphisms and Antiretroviral Therapy-Induced Lipodystrophy in HIV-1 Infected Patients: A Case-Control Study
Current HIV Research Synthesis and Biological Evaluation of a New Series of Benzothiazole-Benzothiadiazine Conjugates as Antibacterial Agents
Letters in Drug Design & Discovery Recent Advances in the Treatment of Amyotrophic Lateral Sclerosis. Emphasis on Kynurenine Pathway Inhibitors
Central Nervous System Agents in Medicinal Chemistry Structure – Function Relationships of Pre-Fibrillar Protein Assemblies in Alzheimers Disease and Related Disorders
Current Alzheimer Research Neurotransmitter Regulation of Adult Neurogenesis: Putative Therapeutic Targets
CNS & Neurological Disorders - Drug Targets Metabotropic Glutamate Receptors and Interacting Proteins: Evolving Drug Targets
Current Drug Targets Targeted Delivery for Neurodegenerative Disorders Using Gene Therapy Vectors: Gene Next Therapeutic Goals
Current Gene Therapy