Abstract
Human induced pluripotent stem (iPS) cells hold great promise for therapy of a number of degenerative diseases such as ischemic heart failure, Parkinsons disease, Alzheimers disease, diabetes mellitus, sickle cell anemia and Huntington disease. They also have the potential to accelerate drug discovery in 3 ways. The first involves the delineation of chemical components for efficient reprogramming of patients blood cells or cells from biopsies, obviating the need for cellular delivery of reprogramming exogenous transgenes, thereby converting hope into reality for patients suffering from degenerative diseases. Patients worldwide stand to benefit from the clinical applicability of iPS cell-based cell replacement therapy for a number of degenerative diseases. The second is the potential for discovering novel drugs in a high throughput manner using patient-specific iPS cell-derived somatic cells possessing the etiology of the specific disease. The third is their suitability for toxicological testing of drugs and environmental factors. This review focuses on these potential applications of iPS cells with special emphasis on recent updates of iPS cell research contributing to the accelerated drug discovery.
Keywords: Induced Pluripotent Stem, Accelerated
Current Medicinal Chemistry
Title: Induced Pluripotent Stem Cells as a Model for Accelerated Patient- and Disease-specific Drug Discovery
Volume: 17 Issue: 8
Author(s): I. Gunaseeli, M. X. Doss, C. Antzelevitch, J. Hescheler and A. Sachinidis
Affiliation:
Keywords: Induced Pluripotent Stem, Accelerated
Abstract: Human induced pluripotent stem (iPS) cells hold great promise for therapy of a number of degenerative diseases such as ischemic heart failure, Parkinsons disease, Alzheimers disease, diabetes mellitus, sickle cell anemia and Huntington disease. They also have the potential to accelerate drug discovery in 3 ways. The first involves the delineation of chemical components for efficient reprogramming of patients blood cells or cells from biopsies, obviating the need for cellular delivery of reprogramming exogenous transgenes, thereby converting hope into reality for patients suffering from degenerative diseases. Patients worldwide stand to benefit from the clinical applicability of iPS cell-based cell replacement therapy for a number of degenerative diseases. The second is the potential for discovering novel drugs in a high throughput manner using patient-specific iPS cell-derived somatic cells possessing the etiology of the specific disease. The third is their suitability for toxicological testing of drugs and environmental factors. This review focuses on these potential applications of iPS cells with special emphasis on recent updates of iPS cell research contributing to the accelerated drug discovery.
Export Options
About this article
Cite this article as:
Gunaseeli I., Doss X. M., Antzelevitch C., Hescheler J. and Sachinidis A., Induced Pluripotent Stem Cells as a Model for Accelerated Patient- and Disease-specific Drug Discovery, Current Medicinal Chemistry 2010; 17 (8) . https://dx.doi.org/10.2174/092986710790514480
DOI https://dx.doi.org/10.2174/092986710790514480 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cancer Gene Therapy Utilizing Interleukin-13 Receptor α2 Chain
Current Gene Therapy Regulation of Mitochondrial Function and its Impact in Metabolic Stress
Current Medicinal Chemistry Insulin Resistance the Link between T2DM and CVD: Basic Mechanisms and Clinical Implications
Current Vascular Pharmacology Plant-Derived Biomolecules and Drug Delivery Systems in the Treatment of Liver and Kidney Diseases
Current Pharmaceutical Design Oxytocin in the Heart Regeneration
Recent Patents on Cardiovascular Drug Discovery The Beneficial Role of Vitamin D in Human Immunodeficiency Virus Infection
Current HIV Research Ribozymes in the Age of Molecular Therapeutics
Current Molecular Medicine Mineralocorticoid Receptor Blockade in the Protection of Target Organ Damage
Cardiovascular & Hematological Agents in Medicinal Chemistry Ghrelin and the Brain-gut Axis as a Pharmacological Target for Appetite Control
Current Pharmaceutical Design The Protective Effects of Levosimendan on Ischemia/Reperfusion Injury and Apoptosis
Recent Patents on Cardiovascular Drug Discovery Recent Advances in the Development of Selective CB2 Agonists as Promising Anti-Inflammatory Agents
Current Medicinal Chemistry Cryptotanshinone Induces Pro-death Autophagy through JNK Signaling Mediated by Reactive Oxygen Species Generation in Lung Cancer Cells
Anti-Cancer Agents in Medicinal Chemistry Limitations and Potential Clinical Application on Contrast Echocardiography
Current Cardiology Reviews Potential Role of Endothelin in Early Vascular Aging
Current Hypertension Reviews Repurposing Drugs for Cancer Prevention
Current Topics in Medicinal Chemistry Recent Advances in Asialoglycoprotein Receptor and Glycyrrhetinic Acid Receptor-Mediated and/or pH-Responsive Hepatocellular Carcinoma- Targeted Drug Delivery
Current Medicinal Chemistry The Effect of Antihypertensive Drugs on Central Blood Pressure Beyond Peripheral Blood Pressure. Part II: Evidence for Specific Class-Effects of Antihypertensive Drugs on Pressure Amplification
Current Pharmaceutical Design Effects of Diabetes on Murine Lipoproteins and Vascular Disease
Current Drug Targets Mitochondrial Functionality and Chemical Compound Action on Sperm Function
Current Medicinal Chemistry Future Therapeutic Strategies in Inflammatory Cardiomyopathy: Insights from the Experimental Autoimmune Myocarditis Model
Cardiovascular & Hematological Disorders-Drug Targets