Abstract
Protein-protein interaction network represents an important aspect of systems biology. The understanding of the plant proteinprotein interaction network and interactome will provide crucial insights into the regulation of plant developmental, physiological, and pathological processes. In this review, we will first define the concept of plant interactome and the protein-protein interaction network. The significance of the plant interactome study will be discussed. We will then compare the pros and cons for different strategies for interactome mapping including yeast two-hybrid system (Y2H), affinity purification mass spectrometry (AP-MS), bimolecular fluorescence complementation (BiFC), and in silico prediction. The application of these platforms on specific plant biology questions will be further discussed. The recent advancements revealed the great potential for plant protein-protein interaction network and interactome to elucidate molecular mechanisms for signal transduction, stress responses, cell cycle control, pattern formation, and others. Mapping the plant interactome in model species will provide important guideline for the future study of plant biology.
Current Genomics
Title: Plant Protein-Protein Interaction Network and Interactome
Volume: 11 Issue: 1
Author(s): Yixiang Zhang, Peng Gao and Joshua S. Yuan
Affiliation:
Abstract: Protein-protein interaction network represents an important aspect of systems biology. The understanding of the plant proteinprotein interaction network and interactome will provide crucial insights into the regulation of plant developmental, physiological, and pathological processes. In this review, we will first define the concept of plant interactome and the protein-protein interaction network. The significance of the plant interactome study will be discussed. We will then compare the pros and cons for different strategies for interactome mapping including yeast two-hybrid system (Y2H), affinity purification mass spectrometry (AP-MS), bimolecular fluorescence complementation (BiFC), and in silico prediction. The application of these platforms on specific plant biology questions will be further discussed. The recent advancements revealed the great potential for plant protein-protein interaction network and interactome to elucidate molecular mechanisms for signal transduction, stress responses, cell cycle control, pattern formation, and others. Mapping the plant interactome in model species will provide important guideline for the future study of plant biology.
Export Options
About this article
Cite this article as:
Zhang Yixiang, Gao Peng and Yuan S. Joshua, Plant Protein-Protein Interaction Network and Interactome, Current Genomics 2010; 11 (1) . https://dx.doi.org/10.2174/138920210790218016
DOI https://dx.doi.org/10.2174/138920210790218016 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements