Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Insulin-Degrading Enzyme: Structure-Function Relationship and its Possible Roles in Health and Disease

Author(s): A. Fernandez-Gamba, M. C. Leal, L. Morelli and E. M. Castano

Volume 15, Issue 31, 2009

Page: [3644 - 3655] Pages: 12

DOI: 10.2174/138161209789271799

Price: $65

Abstract

Insulin-degrading enzyme (IDE) or insulysin is a highly conserved Zn2+ -dependent endopeptidase with an “inverted” HxxEH motif. In vivo, IDE contributes to regulate the steady state levels of peripheral insulin and cerebral amyloid β peptide (Aβ) of Alzheimers disease. In vitro, substrates of IDE include a broad spectrum of peptides with relevant physiological functions such as atrial natriuretic factor, insulin-like growth factor-II, transforming growth factor- α, β-endorphin, amylin or glucagon. The recently solved crystal structures of an inactive IDE mutant bound to four different substrates indicate, in accordance with previous compelling biochemical data, that peptide backbone conformation and size are major determinants of IDE recognition and substrate selectivity. IDE-N and IDE-C halves contribute to substrate binding and may rotate away from each other leading to open and closed conformers that permit or preclude the entry of substrates. Noteworthy, stabilization of substrate β strands in their IDE-bound form may explain the preference of IDE for peptides with a high tendency to self-assembly as amyloid fibrils. These structural requirements may underlie the capability of some amyloid peptides of forming extremely stable complexes with IDE and raise the possibility of a dead-end chaperone-like function of IDE independent of catalysis. Furthermore, the recent recognition of IDE as a varicella zoster virus receptor and its putative involvement in muscle cell differentiation, steroid receptor signaling or proteasome modulation suggest that IDE is a multi-functional protein with broad and relevant roles in several basic cellular processes. Accordingly, IDE functions, regulation or trafficking may partake in the molecular pathogenesis of major human diseases and become potential targets for therapeutic intervention.

Keywords: Insulin degrading enzyme, insulysin, metallopeptidases, amyloid β, peptides, Alzheimer, diabetes mellitus type 2, varicella zoster virus


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy