Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Synthesis, Molecular Targets, and Antitumor Activities of Substituted Tetrahydro-1- Oxopyrano[4,3-b][1]Benzopyrans and Nanogels for Drug Delivery

Author(s): Elisabeth M. Perchellet, Jean-Pierre H. Perchellet, Chanran K. Ganta, Deryl L. Troyer, Aibin Shi and Duy H. Hua

Volume 9, Issue 8, 2009

Page: [864 - 876] Pages: 13

DOI: 10.2174/187152009789124682

Price: $65

Abstract

A class of substituted 1H,7H-5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyrans (tricyclic pyrones; TPs) was synthesized from a one-pot condensation reaction of 6-substituted 4-hydroxy-2-pyrones and cyclohexenecarboxaldehydes. The reaction involves a 6π-electrocyclic ring closing process, and stereo- and regioselectivities were examined. C3-Pyridyl-containing TPs may represent a novel synthetic class of microtubule de-stabilizing anticancer drugs that inhibit macromolecule synthesis, tubulin polymerization, and the proliferation of a spectrum of wild-type and multi-drug resistant tumor cell lines in vitro. A linear skeleton with a N-containing aromatic ring attached at C3 of the top A-ring, a central pyran B-ring and a six-membered bottom C-ring with no alkylation at C7 are required for the antitumor activities of the lead compounds, a 3-pyridyl benzopyran (code name H10) and its 2-pyridyl regioisomer (code name H19). In addition to interacting with the colchicine-binding site to inhibit tubulin polymerization and increase the mitotic index, these TP analogs also block the cellular transport of nucleosides to inhibit DNA synthesis more effectively than other antimitotic agents. The anticancer potential of TPs in vivo is suggested by the fact that i.p. injections of H10 decrease the growth of solid tumors in mice inoculated with lung or ovarian carcinomas. A drug-delivery system involving nanogels was studied. We incorporated the anticancer compound, 6-hydroxymethyl-1,4-anthracenedione (code name AQ10) into PEG-PEI nanogel, and found that AQ10-encapsulated nanogel PEG-PEI is significantly more effective in altering the growth of Pan 02 (pancreatic cancer) cells compared to AQ10 or nanogel PEG-PEI alone. Since AQ10 is insoluble in water, PEG-PEI encapsulation represents a way to solubilize and deliver this as well as other poorly soluble compounds.

Keywords: 1H, 7H-5a, 6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyrans (tricyclic pyrones), 6-hydroxymethyl-1, 4-anthracenedione (AQ10), antitumor agents, tubulin polymerization, mitotic index, DNA synthesis, nucleoside transport


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy