Abstract
Persistent pain, a common clinical condition, could be caused by inflammation, tissue injury secondary to trauma or surgery, and nerve injuries. It is often inadequately controlled by current treatments, such as opioids and nonsteroidal anti-inflammatory drugs. The PDZ (Postsynaptic density 95, Discs large, and Zonula occludens-1) domains are ubiquitous protein interaction modules often found among multi-protein signaling complexes at neuronal synapses. Recent preclinical research shows that targeted disruption of PDZ domain-mediated protein interaction among N-methyl-Daspartate (NMDA) receptor signaling complexes significantly attenuates the development and maintenance of persistent pain without affecting nociceptive responsiveness to acute pain. PDZ domains at excitatory synapses may be new molecular targets for prevention and treatment of persistent pain. Here, we illustrate expression and distribution of the PDZ domain- containing proteins associated with NMDA receptors in the pain-related regions of the central nervous system, review the evidence for their roles in persistent pain states, and discuss potential mechanisms by which these PDZ domaincontaining proteins are involved in persistent pain.
Keywords: PSD-93, PSD-95, NMDA receptors, AMPA receptors, Trafficking, Spinal cord, Persistent pain, Chronic pain
Current Neuropharmacology
Title: PDZ Domains at Excitatory Synapses: Potential Molecular Targets for Persistent Pain Treatment
Volume: 4 Issue: 3
Author(s): Yuan-Xiang Tao and Roger A. Johns
Affiliation:
Keywords: PSD-93, PSD-95, NMDA receptors, AMPA receptors, Trafficking, Spinal cord, Persistent pain, Chronic pain
Abstract: Persistent pain, a common clinical condition, could be caused by inflammation, tissue injury secondary to trauma or surgery, and nerve injuries. It is often inadequately controlled by current treatments, such as opioids and nonsteroidal anti-inflammatory drugs. The PDZ (Postsynaptic density 95, Discs large, and Zonula occludens-1) domains are ubiquitous protein interaction modules often found among multi-protein signaling complexes at neuronal synapses. Recent preclinical research shows that targeted disruption of PDZ domain-mediated protein interaction among N-methyl-Daspartate (NMDA) receptor signaling complexes significantly attenuates the development and maintenance of persistent pain without affecting nociceptive responsiveness to acute pain. PDZ domains at excitatory synapses may be new molecular targets for prevention and treatment of persistent pain. Here, we illustrate expression and distribution of the PDZ domain- containing proteins associated with NMDA receptors in the pain-related regions of the central nervous system, review the evidence for their roles in persistent pain states, and discuss potential mechanisms by which these PDZ domaincontaining proteins are involved in persistent pain.
Export Options
About this article
Cite this article as:
Tao Yuan-Xiang and Johns A. Roger, PDZ Domains at Excitatory Synapses: Potential Molecular Targets for Persistent Pain Treatment, Current Neuropharmacology 2006; 4 (3) . https://dx.doi.org/10.2174/157015906778019473
DOI https://dx.doi.org/10.2174/157015906778019473 |
Print ISSN 1570-159X |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6190 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Design, Synthesis and Anticonvulsant Activity Evaluation of 7-Substituted –[1,2,4]-Triazolo[4,3-f]Pyrimidine Derivatives
Medicinal Chemistry Curcumin, Resveratrol and Cannabidiol as Natural Key Prototypes in Drug Design for Neuroprotective Agents
Current Neuropharmacology The Usefulness of Phalangeal Quantitative Ultrasound in the Assessment of Skeletal Status in Children and Adolescents
Current Medical Imaging An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review
Mini-Reviews in Medicinal Chemistry Therapeutic Hypothermia in Brain Injuries and Related Diseases
Recent Patents on Inflammation & Allergy Drug Discovery Discovery of Substituted N-(6-Chloro-3-cyano-4-phenyl-4H-chromen-2-yl)- 2-(4-chloro-phenoxy)-acetamide for Biphasic Anticancer and Anticonvulsant Activities
Medicinal Chemistry Synthesis and Biological Potential Assessment of 2-Substituted Quinazolin-4(3<i>H</i>)-ones as Inhibitors of Phosphodiesterase-I and Carbonic Anhydrase-II
Medicinal Chemistry Neuroprotective Strategies in Glaucoma
Current Pharmaceutical Design The Role of Orexin System in Antipsychotics Induced Weight Gain
Current Psychiatry Reviews HLA and TCR Recognition of Medications in Severe Cutaneous Adverse Reactions
Current Immunology Reviews (Discontinued) Gene Therapy for Neuroprotection and Neurorestoration (Part I)
Current Gene Therapy Galanin: A Novel Therapeutic Target for Depression, Anxiety Disorders and Drug Addiction?
CNS & Neurological Disorders - Drug Targets Targeting Striatal Metabotropic Glutamate Receptor Type 5 in Parkinson’s Disease: Bridging Molecular Studies and Clinical Trials
CNS & Neurological Disorders - Drug Targets Convection-Enhanced Delivery: Neurosurgical Issues
Current Drug Targets Effect of Nutrient Medium, Phytohormones and Elicitation Treatment on in-vitro Callus Culture of Bacopa monniera and Expression of Secondary Metabolites
The Natural Products Journal Some Highlights on Epileptic EEG Processing
Recent Patents on Biomedical Engineering (Discontinued) Recent Patents on Biomedical Devices and Nanomaterials for Hyperthermal Therapy of Cancer
Recent Patents on Nanomedicine Ketogenic Diet Acts on Body Remodeling and MicroRNAs Expression Profile
MicroRNA Synthesis and Evaluation of Schiff Bases for Anticonvulsant and Behavioral Depressant Properties
Central Nervous System Agents in Medicinal Chemistry The Clinics and Etiology of Preeclampsia
Current Women`s Health Reviews