Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Compressive Review on Source, Toxicity and Biological Activity of Flavonoid

In Press, (this is not the final "Version of Record"). Available online 02 August, 2024
Author(s): Bhoopendra Singh* and Bhupesh Chander Semwal
Published on: 02 August, 2024

DOI: 10.2174/0115680266316032240718050055

Price: $95

Abstract

Flavonoids are biologically active chemicals in various fruits, plants, vegetables, and leaves, which have promising uses in medicinal science. The health properties of these natural chemicals are widely accepted, and efforts are underway to extract the specific components referred to as flavonoids. Flavonoids demonstrate a diverse range of bio-activities, anticancer, antioxidant activity, anti-cholinesterase activity, antiinflammatory activity, antimalarial activity, antidiabetic activity, neurodegenerative disease, cardiovascular effect, hepatoprotective effects, and antiviral and antimicrobial activity. This study aims to examine the prevailing trends in flavonoid investigation studies, elucidate the activity of flavonoids, examine their various func-tions and uses, assess the potential of flavonoids as preventive medications for chronic diseases, and outline future research opportunities in this field. This review explores the diverse functions of flavonoids in preventing and managing various diseases.

[1]
Fardoun, M.M.; Maaliki, D.; Halabi, N.; Iratni, R.; Bitto, A.; Baydoun, E.; Eid, A.H. Flavonoids in adipose tissue inflammation and atherosclerosis: One arrow, two targets. Clin. Sci. (Lond.), 2020, 134(12), 1403-1432.
[http://dx.doi.org/10.1042/CS20200356] [PMID: 32556180]
[2]
Ferrer, J.L.; Austin, M.B.; Stewart, C., Jr; Noel, J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem., 2008, 46(3), 356-370.
[http://dx.doi.org/10.1016/j.plaphy.2007.12.009] [PMID: 18272377]
[3]
Aoki, T.; Akashi, T.; Ayabe, S. Ayabe S ichi. Flavonoids of leguminous plants: Structure, biological activity, and biosynthesis. J. Plant Res., 2000, 113(4), 475-488.
[http://dx.doi.org/10.1007/PL00013958]
[4]
Mol, J.; Grotewold, E.; Koes, R. How genes paint flowers and seeds. Trends Plant Sci., 1998, 3(6), 212-217.
[http://dx.doi.org/10.1016/S1360-1385(98)01242-4]
[5]
Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol., 2002, 5(3), 218-223.
[http://dx.doi.org/10.1016/S1369-5266(02)00256-X] [PMID: 11960739]
[6]
Feild, T.S.; Lee, D.W.; Holbrook, N.M. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol., 2001, 127(2), 566-574.
[http://dx.doi.org/10.1104/pp.010063] [PMID: 11598230]
[7]
Stafford, H.A. Flavonoid evolution: An enzymic approach. Plant Physiol., 1991, 96(3), 680-685.
[http://dx.doi.org/10.1104/pp.96.3.680] [PMID: 16668242]
[8]
Burak, M.; Imen, Y. Flavonoids and their antioxidant properties. Turk. Klin. Tip Bilim. Derg., 1999, 19(1), 296-304.
[9]
Castañeda-Ovando, A.; Pacheco-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem., 2009, 113(4), 859-871.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.001]
[10]
Lee, Y.K.; Yuk, D.Y.; Lee, J.W.; Lee, S.Y.; Ha, T.Y.; Oh, K.W.; Yun, Y.P.; Hong, J.T. (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res., 2009, 1250, 164-174.
[http://dx.doi.org/10.1016/j.brainres.2008.10.012] [PMID: 18992719]
[11]
Metodiewa, D.; Kochman, A.; Karolczak, S. Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavanone oximes: A comparison with natural polyphenolic flavonoid (rutin) action. Biochem. Mol. Biol. Int., 1997, 41(5), 1067-1075.
[PMID: 9137839]
[12]
Hayashi, T.; Sawa, K.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Morita, N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J. Nat. Prod., 1988, 51(2), 345-348.
[http://dx.doi.org/10.1021/np50056a030] [PMID: 3379415]
[13]
Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and emerging extraction processes of flavonoids. Processes (Basel), 2020, 8(4), 434.
[http://dx.doi.org/10.3390/pr8040434]
[14]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 16275.
[http://dx.doi.org/10.1155/2013/162750]
[15]
Bondonno, N.P.; Lewis, J.R.; Blekkenhorst, L.C.; Bondonno, C.P.; Shin, J.H.C.; Croft, K.D.; Woodman, R.J.; Wong, G.; Lim, W.H.; Gopinath, B.; Flood, V.M.; Russell, J.; Mitchell, P.; Hodgson, J.M. Association of flavonoids and flavonoid-rich foods with all-cause mortality: The blue mountains eye study. Clin. Nutr., 2020, 39(1), 141-150.
[http://dx.doi.org/10.1016/j.clnu.2019.01.004] [PMID: 30718096]
[16]
Khalifa, I.; Zhu, W.; Li, K.; Li, C. Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—A structural review. J. Funct. Foods, 2018, 40, 28-43.
[http://dx.doi.org/10.1016/j.jff.2017.10.041]
[17]
Adetunji, J.A.; Fasae, K.D.; Awe, A.I.; Paimo, O.K.; Adegoke, A.M.; Akintunde, J.K.; Sekhoacha, M.P. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon, 2023, 9(6), e17166.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17166] [PMID: 37484296]
[18]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[19]
Iwashina, T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull Natl Mus Nat Sci., 2013, 39(1), 25-51.
[20]
Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14(3), 217-225.
[http://dx.doi.org/10.1016/S1369-703X(02)00221-8]
[21]
Dixon, R.; Ferreira, D. Genistein. Phytochemistry, 2002, 60(3), 205-211.
[http://dx.doi.org/10.1016/S0031-9422(02)00116-4] [PMID: 12031439]
[22]
Szkudelska, K.; Nogowski, L. Genistein—A dietary compound inducing hormonal and metabolic changes. J. Steroid Biochem. Mol. Biol., 2007, 105(1-5), 37-45.
[http://dx.doi.org/10.1016/j.jsbmb.2007.01.005] [PMID: 17588743]
[23]
Corcoran, M.P.; McKay, D.L.; Blumberg, J.B. Flavonoid basics: Chemistry, sources, mechanisms of action, and safety. J. Nutr. Gerontol. Geriatr., 2012, 31(3), 176-189.
[http://dx.doi.org/10.1080/21551197.2012.698219] [PMID: 22888837]
[24]
Skibola, C.F.; Smith, M.T. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med., 2000, 29(3-4), 375-383.
[http://dx.doi.org/10.1016/S0891-5849(00)00304-X] [PMID: 11035267]
[25]
Rodríguez-Fragoso, L.; Reyes-Esparza, J. Fruit/vegetable-drug interactions: Effects on drug metabolizing enzymes and drug transporters.Drug Discovery; InTechOpen: London, 2013, p. 526.
[26]
Albini, A.; Rosano, C.; Angelini, G.; Amaro, A.; Esposito, A.I.; Maramotti, S.; Noonan, D.M.; Pfeffer, U. Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors. Curr. Med. Chem., 2014, 21(9), 1129-1145.
[http://dx.doi.org/10.2174/0929867321666131129124640] [PMID: 24304271]
[27]
Mensah, M.L.; Komlaga, G.; Forkuo, A.D.; Firempong, C.; Anning, A.K.; Dickson, R.A. Toxicity and safety implications of herbal medicines used in Africa. Herb Med., 2019, 63(5), 849-1992.
[28]
Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci., 2005, 10(5), 236-242.
[http://dx.doi.org/10.1016/j.tplants.2005.03.002] [PMID: 15882656]
[29]
Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[30]
Arts, I.C.W.; van de Putte, B.; Hollman, P.C.H. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem., 2000, 48(5), 1746-1751.
[http://dx.doi.org/10.1021/jf000025h] [PMID: 10820089]
[31]
Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F.; Tomás-Barberán, F.A. In vitro availability of flavonoids and other phenolics in orange juice. J. Agric. Food Chem., 2001, 49(2), 1035-1041.
[http://dx.doi.org/10.1021/jf0000528] [PMID: 11262068]
[32]
Tomás‐Barberán, F.A.; Clifford, M.N. Flavanones, chalcones and dihydrochalcones–nature, occurrence and dietary burden. J. Sci. Food Agric., 2000, 80(7), 1073-1080.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>3.0.CO;2-B]
[33]
Rathmell, W.G.; Bendall, D.S. Phenolic compounds in relation to phytoalexin biosynthesis in hypocotyls of Phaseolus vulgaris. Physiol. Plant Pathol., 1971, 1(3), 351-362.
[http://dx.doi.org/10.1016/0048-4059(71)90055-5]
[34]
Medjakovic, S.; Jungbauer, A. Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. J. Steroid Biochem. Mol. Biol., 2008, 108(1-2), 171-177.
[http://dx.doi.org/10.1016/j.jsbmb.2007.10.001] [PMID: 18060767]
[35]
Zhang, Y.; Wang, G.J.; Song, T.T.; Murphy, P.A.; Hendrich, S. Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. J. Nutr., 1999, 129(5), 957-962.
[http://dx.doi.org/10.1093/jn/129.5.957] [PMID: 10222386]
[36]
Krenn, L.; Unterrieder, I.; Ruprechter, R. Quantification of isoflavones in red clover by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 777(1-2), 123-128.
[http://dx.doi.org/10.1016/S1570-0232(02)00079-X] [PMID: 12270205]
[37]
Sahu, B.D.; Kalvala, A.K.; Koneru, M.; Mahesh Kumar, J.; Kuncha, M.; Rachamalla, S.S.; Sistla, R. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence. PLoS One, 2014, 9(9), e105070.
[http://dx.doi.org/10.1371/journal.pone.0105070] [PMID: 25184746]
[38]
Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr., 2013, 4(3), 384S-392S.
[http://dx.doi.org/10.3945/an.112.003517] [PMID: 23674808]
[39]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[40]
Justesen, U.; Knuthsen, P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem., 2001, 73(2), 245-250.
[http://dx.doi.org/10.1016/S0308-8146(01)00114-5]
[41]
Atanassova, M.; Bagdassarian, V. Rutin content in plant products. J Univ Chem Technol Metall., 2009, 44(2), 201-203.
[42]
Shimoi, K.; Okada, H.; Furugori, M.; Goda, T.; Takase, S.; Suzuki, M.; Hara, Y.; Yamamoto, H.; Kinae, N. Intestinal absorption of luteolin and luteolin 7‐ O ‐β‐glucoside in rats and humans. FEBS Lett., 1998, 438(3), 220-224.
[http://dx.doi.org/10.1016/S0014-5793(98)01304-0] [PMID: 9827549]
[43]
Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Régerat, F.; Rémésy, C. Bioavailability of the flavanone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1148-G1154.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1148] [PMID: 11093936]
[44]
Truong, V.D.; Deighton, N.; Thompson, R.T.; McFeeters, R.F.; Dean, L.O.; Pecota, K.V.; Yencho, G.C. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS. J. Agric. Food Chem., 2010, 58(1), 404-410.
[http://dx.doi.org/10.1021/jf902799a] [PMID: 20017481]
[45]
Gálvez, M.C.; García Barroso, C.; Pérez-Bustamante, J.A. Analysis of polyphenolic compounds of different vinegar samples. Zeitschrift für Leb Und-forsch., 1994, 199(1), 29-31.
[http://dx.doi.org/10.1007/BF01192948]
[46]
Leung, L.K.; Su, Y.; Zhang, Z.; Chen, Z-Y.; Huang, Y.; Chen, R. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr., 2001, 131(9), 2248-2251.
[http://dx.doi.org/10.1093/jn/131.9.2248] [PMID: 11533262]
[47]
Pourmorad, F.; Hosseinimehr, S.J.; Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol., 2006, 5(11)
[48]
Kumar, S.; Pandey, A.K. Antioxidant, lipo-protective and antibacterial activities of phytoconstituents present in Solanum xanthocarpum root. Int Rev Biophys Chem., 2012, 3(3), 42-47.
[49]
Wang, L.; Huang, S.; Liang, X.; Zhou, J.; Han, Y.; He, J.; Xu, D. Immuno-modulatory role of baicalin in atherosclerosis prevention and treatment: Current scenario and future directions. Front. Immunol., 2024, 15, 1377470.
[http://dx.doi.org/10.3389/fimmu.2024.1377470] [PMID: 38698839]
[50]
Fuhrman, B.; Buch, S.; Vaya, J.; Belinky, P.A.; Coleman, R.; Hayek, T.; Aviram, M. Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr., 1997, 66(2), 267-275.
[http://dx.doi.org/10.1093/ajcn/66.2.267] [PMID: 9250104]
[51]
Craig, W.J. Health-promoting properties of common herbs. Am. J. Clin. Nutr., 1999, 70(3)(Suppl.), 491S-499S.
[http://dx.doi.org/10.1093/ajcn/70.3.491s] [PMID: 10479221]
[52]
Li, J.X.; Xue, B.; Chai, Q.; Liu, Z.X.; Zhao, A.P.; Chen, L.B. Antihypertensive effect of total flavonoid fraction of Astragalus complanatus in hypertensive rats. Chin. J. Physiol., 2005, 48(2), 101-106.
[PMID: 16201455]
[53]
Commenges, D.; Scotet, V.; Renaud, S.; Jacqmin-Gadda, H.; Barberger-Gateau, P.; Dartigues, J.F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol., 2000, 16(4), 357-363.
[http://dx.doi.org/10.1023/A:1007614613771] [PMID: 10959944]
[54]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[55]
Harahap, U.; Syahputra, R.A.; Ahmed, A.; Nasution, A.; Wisely, W.; Sirait, M.L.; Dalimunthe, A.; Zainalabidin, S.; Taslim, N.A.; Nurkolis, F. Current insights and future perspectives of flavonoids: A promising antihypertensive approach. Phytother. Res., 2024, 38(6), 3146-3169.
[56]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[57]
Gupta, K.K.; Taneja, S.C.; Dhar, K.L.; Atal, C.K. Flavonoids of andrographis paniculata. Phytochemistry, 1983, 22(1), 314-315.
[http://dx.doi.org/10.1016/S0031-9422(00)80122-3]
[58]
Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104(2), 466-479.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.054]
[59]
Murlidhar, A.; Babu, K.S.; Sankar, T.R.; Redenna, P.; Reddy, G.V.; Latha, J. Antiinflammatory activity of flavonoid fraction isolated from stem bark of Butea monosperma (Lam): A mechanism based study. Int J Phytopharm., 2010, 1(2), 124-132.
[60]
Aderogba, M.A.; Ogundaini, A.O.; Eloff, J.N. Isolation of two flavonoids from Bauhinia Monandra (KURZ) leaves and their antioxidative effects. Afr. J. Tradit. Complement. Altern. Med., 2006, 3(4), 59-65.
[http://dx.doi.org/10.4314/ajtcam.v3i4.31177]
[61]
Sankaranarayanan, S.; Bama, P.; Ramachandran, J.; Kalaichelvan, P.T.; Deccaraman, M.; Vijayalakshimi, M.; Dhamotharan, R.; Dananjeyan, B.; Sathya Bama, S. Ethnobotanical study of medicinal plants used by traditional users in Villupuram district of Tamil Nadu, India. J. Med. Plants Res., 2010, 4(12), 1089-1101.
[62]
Sannomiya, M.; Fonseca, V.B.; da Silva, M.A.; Rocha, L.R.M.; dos Santos, L.C.; Hiruma-Lima, C.A.; Souza Brito, A.R.M.; Vilegas, W. Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts. J. Ethnopharmacol., 2005, 97(1), 1-6.
[http://dx.doi.org/10.1016/j.jep.2004.09.053] [PMID: 15652267]
[63]
Kogawa, K.; Kazuma, K.; Kato, N.; Noda, N.; Suzuki, M. Biosynthesis of malonylated flavonoid glycosides on the basis of malonyltransferase activity in the petals of Clitoria ternatea. J. Plant Physiol., 2007, 164(7), 886-894.
[http://dx.doi.org/10.1016/j.jplph.2006.05.006] [PMID: 16887235]
[64]
Ghoulami, S.; Il Idrissi, A.; Fkih-Tetouani, S. Phytochemical study of Mentha longifolia of Morocco. Fitoterapia, 2001, 72(5), 596-598.
[http://dx.doi.org/10.1016/S0367-326X(01)00279-9] [PMID: 11429267]
[65]
Walle, T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med., 2004, 36(7), 829-837.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.002] [PMID: 15019968]
[66]
Hollman, PCH Absorption, bioavailability, and metabolism of flavonoids. Pharmaceut Biol., 2004, 42(sup1), 74-83.
[67]
Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.J.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 2000, 48(7), 2663-2669.
[http://dx.doi.org/10.1021/jf000070p] [PMID: 10898604]
[68]
Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules, 2014, 19(10), 16240-16265.
[http://dx.doi.org/10.3390/molecules191016240] [PMID: 25310150]
[69]
Roy, A.; Datta, S.; Bhatia, K.S. Bhumika; Jha, P.; Prasad, R. Role of plant derived bioactive compounds against cancer. S. Afr. J. Bot., 2022, 149, 1017-1028.
[http://dx.doi.org/10.1016/j.sajb.2021.10.015]
[70]
Deng, Z.; Hassan, S.; Rafiq, M.; Li, H.; He, Y.; Cai, Y.; Kang, X.; Liu, Z.; Yan, T. Pharmacological Activity of Eriodictyol: The Major Natural Polyphenolic Flavanone. Evid-Based Compl Altern Med, 2020, 2020, 1352.
[71]
Yao, L.; Liu, W.; Bashir, M.; Nisar, M.F.; Wan, C.C. Eriocitrin: A review of pharmacological effects. Biomed. Pharmacother., 2022, 154, 113563.
[http://dx.doi.org/10.1016/j.biopha.2022.113563] [PMID: 35987162]
[72]
Li, W.; Du, Q.; Li, X.; Zheng, X.; Lv, F.; Xi, X.; Huang, G.; Yang, J.; Liu, S. Eriodictyol inhibits proliferation, metastasis and induces apoptosis of glioma cells via PI3K/Akt/NF-κB signaling pathway. Front. Pharmacol., 2020, 11, 114.
[http://dx.doi.org/10.3389/fphar.2020.00114] [PMID: 32158391]
[73]
Pyrzynska, K. Hesperidin: A review on extraction methods, stability and biological activities. Nutrients, 2022, 14(12), 2387.
[http://dx.doi.org/10.3390/nu14122387] [PMID: 35745117]
[74]
Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules, 2022, 27(4), 1149.
[http://dx.doi.org/10.3390/molecules27041149] [PMID: 35208939]
[75]
Pandey, P.; Khan, F. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutr. Res., 2021, 92, 21-31.
[http://dx.doi.org/10.1016/j.nutres.2021.05.011] [PMID: 34273640]
[76]
Testai, L.; Piragine, E.; Piano, I.; Flori, L.; Da Pozzo, E.; Miragliotta, V.; Pirone, A.; Citi, V.; Di Cesare Mannelli, L.; Brogi, S. The citrus flavonoid naringenin protects the myocardium from ageing-dependent dysfunction: Potential role of SIRT1. Oxid. Med. Cell. Longev., 2020, 2020, 4650207.
[77]
Zhang, J.; Liu, Z.; Luo, Y.; Li, X.; Huang, G.; Chen, H.; Li, A.; Qin, S. The role of flavonoids in the osteogenic differentiation of mesenchymal stem cells. Front. Pharmacol., 2022, 13, 849513.
[http://dx.doi.org/10.3389/fphar.2022.849513] [PMID: 35462886]
[78]
Chtourou, Y.; Fetoui, H.; Jemai, R.; Ben Slima, A.; Makni, M.; Gdoura, R. Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway. Eur. J. Pharmacol., 2015, 746, 96-105.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.027] [PMID: 25446569]
[79]
Gumushan Aktas, H.; Akgun, T. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomed. Pharmacother., 2018, 106, 770-775.
[http://dx.doi.org/10.1016/j.biopha.2018.07.008] [PMID: 29990870]
[80]
Koushki, M.; Farrokhi Yekta, R.; Amiri-Dashatan, N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J. Funct. Foods, 2023, 104, 105502.
[http://dx.doi.org/10.1016/j.jff.2023.105502]
[81]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Trill, J.; Gibbons, S.; Viljoen, A. Acacetin—A simple flavone exhibiting diverse pharmacological activities. Phytochem. Lett., 2019, 32, 56-65.
[http://dx.doi.org/10.1016/j.phytol.2019.04.021]
[82]
Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25−35-induced toxicity in mice. J. Alzheimers Dis., 2011, 24(1), 85-100.
[http://dx.doi.org/10.3233/JAD-2010-101593] [PMID: 21297270]
[83]
Catarino, M.; Alves-Silva, J.; Pereira, O.; Cardoso, S. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Curr. Top. Med. Chem., 2015, 15(2), 105-119.
[http://dx.doi.org/10.2174/1568026615666141209144506] [PMID: 25547095]
[84]
Shang, J.; Jiao, J.; Yan, M.; Wang, J.; Li, Q.; Shabuerjiang, L.; Lu, Y.; Song, Q.; Bi, L.; Huang, G.; Zhang, X.; Wen, Y.; Cui, Y.; Wu, K.; Li, G.; Wang, P.; Liu, X. Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomed. Pharmacother., 2023, 161, 114534.
[http://dx.doi.org/10.1016/j.biopha.2023.114534] [PMID: 36933376]
[85]
Khalid, A.; Naseem, I. Antidiabetic and antiglycating potential of chrysin is enhanced after nano formulation: An in vitro approach. J. Mol. Struct., 2022, 1261, 132906.
[http://dx.doi.org/10.1016/j.molstruc.2022.132906]
[86]
Ding, H.; Ding, H.; Mu, P.; Lu, X.; Xu, Z. Diosmetin inhibits subchondral bone loss and indirectly protects cartilage in a surgically-induced osteoarthritis mouse model. Chem. Biol. Interact., 2023, 370, 110311.
[http://dx.doi.org/10.1016/j.cbi.2022.110311] [PMID: 36563736]
[87]
Balaga, V.K.R.; Pradhan, A.; Thapa, R.; Patel, N.; Mishra, R.; Singla, N. Morin: A comprehensive review on its versatile biological activity and associated therapeutic potential in treating cancers. Pharmacol. Res., 2023, 7, 100264.
[88]
Gu, L.; Li, Z.; Zhang, X.; Chen, M.; Zhang, X. Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells. Biomed. Pharmacother., 2023, 161, 114460.
[http://dx.doi.org/10.1016/j.biopha.2023.114460] [PMID: 36870282]
[89]
Pan, H.; He, J.; Yang, Z.; Yao, X.; Zhang, H.; Li, R.; Xiao, Y.; Zhao, C.; Jiang, H.; Liu, Y.; Li, Z.; Guo, B.; Zhang, C.; Li, R.Z.; Liu, L. Myricetin possesses the potency against SARS-CoV-2 infection through blocking viral-entry facilitators and suppressing inflammation in rats and mice. Phytomedicine, 2023, 116, 154858.
[http://dx.doi.org/10.1016/j.phymed.2023.154858] [PMID: 37224774]
[90]
Sati, P.; Dhyani, P.; Bhatt, I.D.; Pandey, A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J. Tradit. Complement. Med., 2019, 9(1), 15-23.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.003] [PMID: 30671362]
[91]
Sayed, A.M.E.; Omar, F.A.; Emam, M.M.A.A.; Farag, M.A. UPLC-MS/MS and GC-MS based metabolites profiling of Moringa oleifera seed with its anti- Helicobacter pylori and anti-inflammatory activities. Nat. Prod. Res., 2022, 36(24), 6433-6438.
[http://dx.doi.org/10.1080/14786419.2022.2037088] [PMID: 35133224]
[92]
Sui, C.; Wu, Y.; Zhang, R.; Zhang, T.; Zhang, Y.; Xi, J.; Ding, Y.; Wen, J.; Hu, Y. Rutin inhibits the progression of osteoarthritis through CBS-mediated RhoA/ROCK signaling. DNA Cell Biol., 2022, 41(6), 617-630.
[http://dx.doi.org/10.1089/dna.2021.1182] [PMID: 35588172]
[93]
Li, B.; Ji, Y.; Yi, C.; Wang, X.; Liu, C.; Wang, C.; Lu, X.; Xu, X.; Wang, X. Rutin Inhibits Ox-LDL-mediated macrophage inflammation and foam cell formation by inducing autophagy and modulating PI3K/ATK signaling. Molecules, 2022, 27(13), 4201.
[http://dx.doi.org/10.3390/molecules27134201] [PMID: 35807447]
[94]
Dakora, F.D.; Phillips, D.A. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol., 1996, 49(1), 1-20.
[http://dx.doi.org/10.1006/pmpp.1996.0035]
[95]
Kurzer, M.S.; Xu, X. Dietary phytoestrogens. Annu. Rev. Nutr., 1997, 17(1), 353-381.
[http://dx.doi.org/10.1146/annurev.nutr.17.1.353] [PMID: 9240932]
[96]
Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules, 2019, 24(6), 1076.
[http://dx.doi.org/10.3390/molecules24061076] [PMID: 30893792]
[97]
Luo, Y.; Jian, Y.; Liu, Y.; Jiang, S.; Muhammad, D.; Wang, W. Flavanols from nature: A phytochemistry and biological activity review. Molecules, 2022, 27(3), 719.
[http://dx.doi.org/10.3390/molecules27030719] [PMID: 35163984]
[98]
Al-Dashti, Y.A.; Holt, R.R.; Stebbins, C.L.; Keen, C.L.; Hackman, R.M. Dietary flavanols: A review of select effects on vascular function, blood pressure, and exercise performance. J. Am. Coll. Nutr., 2018, 37(7), 553-567.
[http://dx.doi.org/10.1080/07315724.2018.1451788] [PMID: 29718795]
[99]
Martin, M.Á.; Ramos, S. Impact of cocoa flavanols on human health. Food Chem. Toxicol., 2021, 151, 112121.
[http://dx.doi.org/10.1016/j.fct.2021.112121] [PMID: 33722594]
[100]
Khazeei Tabari, M.A.; Iranpanah, A.; Bahramsoltani, R.; Rahimi, R. Flavonoids as promising antiviral agents against SARS-CoV-2 infection: A mechanistic review. Molecules, 2021, 26(13), 3900.
[http://dx.doi.org/10.3390/molecules26133900] [PMID: 34202374]
[101]
Hasan, S.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother., 2022, 146, 112442.
[102]
Wei, Q.; Zhang, Y. Flavonoids with Anti-Angiogenesis Function in Cancer. Molecules, 2024, 29(7), 1570.
[http://dx.doi.org/10.3390/molecules29071570] [PMID: 38611849]
[103]
Wagner, C.E.; Jurutka, P.W.; Marshall, P.A.; Groy, T.L.; van der Vaart, A.; Ziller, J.W.; Furmick, J.K.; Graeber, M.E.; Matro, E.; Miguel, B.V.; Tran, I.T.; Kwon, J.; Tedeschi, J.N.; Moosavi, S.; Danishyar, A.; Philp, J.S.; Khamees, R.O.; Jackson, J.N.; Grupe, D.K.; Badshah, S.L.; Hart, J.W. Modeling, synthesis and biological evaluation of potential retinoid X receptor (RXR) selective agonists: Novel analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene). J. Med. Chem., 2009, 52(19), 5950-5966.
[http://dx.doi.org/10.1021/jm900496b] [PMID: 19791803]
[104]
Niu, C.; Zhang, J.; Okolo, P.I. III Harnessing Plant Flavonoids to Fight Pancreatic Cancer. Curr. Nutr. Rep., 2024, 13, 566-581.
[http://dx.doi.org/10.1007/s13668-024-00545-9] [PMID: 38700837]
[105]
Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharmaceut Sci., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[106]
Patil, V.M.; Masand, N. AnticancerAnticancer potential of flavonoids: Chemistry, biological activities, and future perspectives. Stud Nat Prod Chem, 2018, 59, 401-430.
[http://dx.doi.org/10.1016/B978-0-444-64179-3.00012-8]
[107]
Devi, K.P.; Rajavel, T.; Nabavi, S.F.; Setzer, W.N.; Ahmadi, A.; Mansouri, K.; Nabavi, S.M. Hesperidin: A promising anticancer agent from nature. Ind. Crops Prod., 2015, 76, 582-589.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.051]
[108]
Ersoz, M.; Erdemir, A.; Duranoglu, D.; Uzunoglu, D.; Arasoglu, T.; Derman, S.; Mansuroglu, B. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 319-329.
[http://dx.doi.org/10.1080/21691401.2018.1556213] [PMID: 30688095]
[109]
Fang, W.; Du, J.; Nie, M.; Wang, X. Recent advances in flavonoid compounds for the treatment of prostate cancer. Mol. Biol. Rep., 2024, 51(1), 653.
[http://dx.doi.org/10.1007/s11033-024-09567-6] [PMID: 38734766]
[110]
Pourakbari, R.; Taher, S.M.; Mosayyebi, B.; Ayoubi-Joshaghani, M.H.; Ahmadi, H.; Aghebati-Maleki, L. Implications for glycosylated compounds and their anti-cancer effects. Int. J. Biol. Macromol., 2020, 163, 1323-1332.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.281] [PMID: 32622770]
[111]
Liang, T.; Guan, R.; Wang, Z.; Shen, H.; Xia, Q.; Liu, M. Comparison of anticancer activity and antioxidant activity between cyanidin-3-O-glucoside liposomes and cyanidin-3-O-glucoside in Caco-2 cells in vitro. RSC Advances, 2017, 7(59), 37359-37368.
[http://dx.doi.org/10.1039/C7RA06387C]
[112]
Alsayari, A.; Muhsinah, A. Aurone: A biologically attractive scaffold as anticanceranticancer agent. Eur. J. Med. Chem., 2019, 166, 417-431.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.078] [PMID: 30739824]
[113]
D’Mello, P.; Gadhwal, M.K.; Joshi, U.; Shetgiri, P. Modeling of COX-2 inhibitory activity of flavonoids. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 33-40.
[114]
Mediratta, K.; El-Sahli, S.; Marotel, M.; Awan, M.Z.; Kirkby, M.; Salkini, A.; Kurdieh, R.; Abdisalam, S.; Shrestha, A.; Di Censo, C.; Sulaiman, A.; McGarry, S.; Lavoie, J.R.; Liu, Z.; Lee, S.H.; Li, X.; Sciumè, G.; D’Costa, V.M.; Ardolino, M.; Wang, L. Targeting CD73 with flavonoids inhibits cancer stem cells and increases lymphocyte infiltration in a triple-negative breast cancer mouse model. Front. Immunol., 2024, 15, 1366197.
[http://dx.doi.org/10.3389/fimmu.2024.1366197] [PMID: 38601156]
[115]
Tarun, G.; Ajay, B.; Bhawana, K.; Sunil, K. Jr Organogels: Advanced and novel drug delivery system. Int Res J Pharm., 2011, 2(12), 15-21.
[116]
Zheng, D.; Wang, Y.; Zhang, D.; Liu, Z.; Duan, C.; Jia, L.; Wang, F.; Liu, Y.; Liu, G.; Hao, L.; Zhang, Q. In vitro antitumor activity of silybin nanosuspension in PC-3 cells. Cancer Lett., 2011, 307(2), 158-164.
[http://dx.doi.org/10.1016/j.canlet.2011.03.028] [PMID: 21507570]
[117]
Lin, C.J.; Sukarieh, R.; Pelletier, J. Silibinin inhibits translation initiation: Implications for anticancer therapy. Mol. Cancer Ther., 2009, 8(6), 1606-1612.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-1152] [PMID: 19509268]
[118]
Júnior, R.G.O.; Ferraz, C.A.A.; Pereira, E.C.V.; Sampaio, P.A.; Silva, M.F.S.; Pessoa, C.O.; Rolim, L.A.; da Silva Almeida, J.R.G. Phytochemical analysis and cytotoxic activity of Cnidoscolus quercifolius Pohl (Euphorbiaceae) against prostate (PC3 and PC3-M) and breast (MCF-7) cancer cells. Pharmacogn. Mag., 2019, 15(60), 24-28.
[http://dx.doi.org/10.4103/pm.pm_6_18]
[119]
Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2019.01.008] [PMID: 30639267]
[120]
Wang, B.; Zhang, X. Inhibitory effects of Broccolini leaf flavonoids on human cancer cells. Scanning, 2012, 34(1), 1-5.
[http://dx.doi.org/10.1002/sca.20278] [PMID: 22532078]
[121]
Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. Int. J. Mol. Sci., 2013, 14(2), 3540-3555.
[http://dx.doi.org/10.3390/ijms14023540] [PMID: 23434657]
[122]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[123]
Zheng, Y.Z.; Deng, G.; Chen, D.F.; Liang, Q.; Guo, R.; Fu, Z.M. Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives: Effects of the chain length and solvent. Food Chem., 2018, 240, 323-329.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.133] [PMID: 28946279]
[124]
Zheng, Y.Z.; Deng, G.; Guo, R.; Fu, Z.M.; Chen, D.F. The influence of the H5⋯O C4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. Phytochemistry, 2019, 160, 19-24.
[http://dx.doi.org/10.1016/j.phytochem.2019.01.011] [PMID: 30669059]
[125]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[126]
Aramouni, K.; Assaf, R.; Shaito, A.; Fardoun, M.; Al-Asmakh, M.; Sahebkar, A.; Eid, A.H. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J. Cell. Physiol., 2023, 238(9), 1951-1963.
[http://dx.doi.org/10.1002/jcp.31071] [PMID: 37436042]
[127]
Preethi Soundarya, S.; Sanjay, V.; Haritha Menon, A.; Dhivya, S.; Selvamurugan, N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int. J. Biol. Macromol., 2018, 110, 74-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.014] [PMID: 28893682]
[128]
Terao, J. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem. Pharmacol., 2017, 139, 15-23.
[http://dx.doi.org/10.1016/j.bcp.2017.03.021] [PMID: 28377278]
[129]
Ebrahimi, F.; Ghazimoradi, M.M.; Fatima, G.; Bahramsoltani, R. Citrus flavonoids and adhesion molecules: Potential role in the management of atherosclerosis. Heliyon, 2023, 9(11), e21849.
[http://dx.doi.org/10.1016/j.heliyon.2023.e21849] [PMID: 38028000]
[130]
Hwang, I.W.; Chung, S.K. Isolation and identification of myricitrin, an antioxidant flavonoid, from daebong persimmon peel. Prev. Nutr. Food Sci., 2018, 23(4), 341-346.
[http://dx.doi.org/10.3746/pnf.2018.23.4.341] [PMID: 30675464]
[131]
Kumar, S.; Gupta, A.; Pandey, A.K. Calotropis procera root extract has the capability to combat free radical-mediated damage. ISRN Pharmacol., 2013, 2013, 691372.
[132]
Mahmood, W.; Saleem, H.; Shahid, W.; Ahmad, I.; Zengin, G.; Mahomoodally, M.F.; Ashraf, M.; Ahemad, N. Clinical enzymes inhibitory activities, antioxidant potential and phytochemical profile of Vernonia oligocephala (DC.) Sch.Bip. ex Walp roots. Biocatal. Agric. Biotechnol., 2019, 18, 101039.
[http://dx.doi.org/10.1016/j.bcab.2019.101039]
[133]
Mishra, A.; Sharma, A.K.; Kumar, S.; Saxena, A.K.; Pandey, A.K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Res. Int., 2013, 2013, 915436.
[134]
Sari, N.M.; Kuspradini, H.; Amirta, R.; Kusuma, I.W. Antioxidant activity of an invasive plant, Melastoma malabathricum and its potential as herbal tea product. IOP Conference Series: Earth and Environmental Science, 2018, 12029.
[http://dx.doi.org/10.1088/1755-1315/144/1/012029]
[135]
Burns, A.; Perry, E.K. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Int. J. Geriatr. Psychiatry, 1996, 11(9), 765-771.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199609)11:9<765::AID-GPS378>3.0.CO;2-5]
[136]
Khan, M.T.H.; Orhan, I.; Şenol, F.S.; Kartal, M.; Şener, B.; Dvorská, M.; Šmejkal, K.; Šlapetová, T. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem. Biol. Interact., 2009, 181(3), 383-389.
[http://dx.doi.org/10.1016/j.cbi.2009.06.024] [PMID: 19596285]
[137]
Kadi, I.; Eltayb, W.A.; Boufissiou, A.; Benaceur, F.; Bouchareb, A.; Soltan, W.B.; Baladehi, M.H.; Kheniche, A.; Abdalla, M. Molecular interactions, binding stability, and synergistic inhibition on Acetylcholinesterase activity of Safranin O in combination with Quercetin and Gallic acid: In vitro and in silico study. J. Mol. Struct., 2023, 1286, 135562.
[http://dx.doi.org/10.1016/j.molstruc.2023.135562]
[138]
Dong, X.; Zhou, S.; Nao, J. Kaempferol as a therapeutic agent in Alzheimer’s disease: Evidence from preclinical studies. Ageing Res. Rev., 2023, 87, 101910.
[http://dx.doi.org/10.1016/j.arr.2023.101910] [PMID: 36924572]
[139]
Heo, H.J.; Kim, M.J.; Lee, J.M.; Choi, S.J.; Cho, H.Y.; Hong, B.; Kim, H.K.; Kim, E.; Shin, D.H. Naringenin from Citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement. Geriatr. Cogn. Disord., 2004, 17(3), 151-157.
[http://dx.doi.org/10.1159/000076349] [PMID: 14739537]
[140]
Kim, J.H.; Lee, S.H.; Lee, H.W.; Sun, Y.N.; Jang, W.H.; Yang, S.Y.; Jang, H.D.; Kim, Y.H. (⿿)-Epicatechin derivate from Orostachys japonicus as potential inhibitor of the human butyrylcholinesterase. Int. J. Biol. Macromol., 2016, 91, 1033-1039.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.069] [PMID: 27341781]
[141]
Kwon, Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease. Exp. Gerontol., 2017, 95, 39-43.
[http://dx.doi.org/10.1016/j.exger.2017.05.014] [PMID: 28528007]
[142]
Siddique, Y.H. Rahul; Ara, G.; Afzal, M.; Varshney, H.; Gaur, K.; Subhan, I.; Mantasha, I.; Shahid, M. Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer’s disease. Chem. Biol. Interact., 2022, 366, 110120.
[http://dx.doi.org/10.1016/j.cbi.2022.110120] [PMID: 36027948]
[143]
Devi, K.P.; Shanmuganathan, B.; Manayi, A.; Nabavi, S.F.; Nabavi, S.M. Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol. Neurobiol., 2017, 54(9), 7028-7041.
[http://dx.doi.org/10.1007/s12035-016-0215-6] [PMID: 27796744]
[144]
Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural antiinflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini-review. Front. Pharmacol., 2019, 10, 1295.
[http://dx.doi.org/10.3389/fphar.2019.01295] [PMID: 31749703]
[145]
Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000, 69(1), 145-182.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.145] [PMID: 10966456]
[146]
Kujubu, D.A.; Fletcher, B.S.; Varnum, B.C.; Lim, R.W.; Herschman, H.R. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J. Biol. Chem., 1991, 266(20), 12866-12872.
[http://dx.doi.org/10.1016/S0021-9258(18)98774-0] [PMID: 1712772]
[147]
Ma, Q.; Jiang, J.G.; Yuan, X.; Qiu, K.; Zhu, W. Comparative antitumor and anti-inflammatory effects of flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids from Cirsium japonicum DC. Food Chem. Toxicol., 2019, 125, 422-429.
[http://dx.doi.org/10.1016/j.fct.2019.01.020] [PMID: 30703393]
[148]
Abubakar, S.; Al-Mansoub, M.A.; Murugaiyah, V.; Chan, K.L. The phytochemical and anti‐inflammatory studies ofDILLENIA SUFFRUTICOSA leaves. Phytother. Res., 2019, 33(3), 660-675.
[http://dx.doi.org/10.1002/ptr.6255] [PMID: 30653753]
[149]
Truong, D.H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro antiinflammatory activities of Severinia buxifolia. J. Food Qual., 2019, 2019, 8178294.
[150]
Muthaura, C.N.; Keriko, J.M.; Derese, S.; Yenesew, A.; Rukunga, G.M. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs. Exp. Parasitol., 2011, 127(3), 609-626.
[http://dx.doi.org/10.1016/j.exppara.2010.11.004] [PMID: 21095187]
[151]
Badshah, S.; Ullah, A.; Ahmad, N.; Almarhoon, Z.; Mabkhot, Y. Increasing the strength and production of artemisinin and its derivatives. Molecules, 2018, 23(1), 100.
[http://dx.doi.org/10.3390/molecules23010100] [PMID: 29301383]
[152]
Khan, H.; Amin, H.; Ullah, A.; Saba, S.; Rafique, J.; Khan, K.; Ahmad, N.; Badshah, S.L. Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from Mallotus philippensis. Oxid. Med. Cell. Longev., 2016, 2016, 1051925.
[153]
Memvanga, P.B.; Tona, G.L.; Mesia, G.K.; Lusakibanza, M.M.; Cimanga, R.K. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. J. Ethnopharmacol., 2015, 169, 76-98.
[http://dx.doi.org/10.1016/j.jep.2015.03.075] [PMID: 25862959]
[154]
Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, flavones, flavanones, and human health: Epidemiological evidence. J. Med. Food, 2005, 8(3), 281-290.
[http://dx.doi.org/10.1089/jmf.2005.8.281] [PMID: 16176136]
[155]
AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their antidiabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[156]
Bule, M.; Abdurahman, A.; Nikfar, S.; Abdollahi, M.; Amini, M. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem. Toxicol., 2019, 125, 494-502.
[http://dx.doi.org/10.1016/j.fct.2019.01.037] [PMID: 30735748]
[157]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[158]
Kaur, J.; Vyas, M.; Singh, J.; Prasad, R.; Gupta, J. Therapeutic applications of naringenin, a flavanone enriched in citrus fruits, for disorders beyond diabetes. Phyton-Int J Exp Botany, 2020, 89(4), 795-803.
[http://dx.doi.org/10.32604/phyton.2020.09420]
[159]
Mechchate, H.; Es-safi, I.; Haddad, H.; Bekkari, H.; Grafov, A.; Bousta, D. Combination of Catechin, Epicatechin, and Rutin: Optimization of a novel complete antidiabetic formulation using a mixture design approach. J. Nutr. Biochem., 2021, 88, 108520.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108520] [PMID: 33017607]
[160]
Muruganathan, N.; Dhanapal, A.R.; Baskar, V.; Muthuramalingam, P.; Selvaraj, D.; Aara, H.; Shiek Abdullah, M.Z.; Sivanesan, I. Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: A review. Metabolites, 2022, 12(11), 1145.
[http://dx.doi.org/10.3390/metabo12111145] [PMID: 36422285]
[161]
Yang, H.; Wang, Y.; Xu, S.; Ren, J.; Tang, L.; Gong, J.; Lin, Y.; Fang, H.; Su, D. Hesperetin, a promising treatment option for diabetes and related complications: A literature review. J. Agric. Food Chem., 2022, 70(28), 8582-8592.
[http://dx.doi.org/10.1021/acs.jafc.2c03257] [PMID: 35801973]
[162]
Mushtaq, Z.; Sadeer, N.B.; Hussain, M. Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W.; Tufail, T.; Al Jbawi, E.; Mahomoodally, M.F. Therapeutical properties of apigenin: A review on the experimental evidence and basic mechanisms. Int. J. Food Prop., 2023, 26(1), 1914-1939.
[http://dx.doi.org/10.1080/10942912.2023.2236329]
[163]
Weng, L.; Zhang, F.; Wang, R.; Ma, W.; Song, Y. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chem. Biol. Interact., 2019, 310, 108665.
[http://dx.doi.org/10.1016/j.cbi.2019.05.031] [PMID: 31125535]
[164]
Panche, A.; Chandra, S.; Diwan, A.D.; Harke, S. Alzheimer’s and current therapeutics: A review. Asian J. Pharm. Clin. Res., 2015, 8(3), 14-19.
[165]
Jäger, A.K.; Saaby, L. Flavonoids and the CNS. Molecules, 2011, 16(2), 1471-1485.
[http://dx.doi.org/10.3390/molecules16021471] [PMID: 21311414]
[166]
Shen, Y.; Zhang, J.; Sheng, R.; Dong, X.; He, Q.; Yang, B.; Hu, Y. Synthesis and biological evaluation of novel flavonoid derivatives as dual binding acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 372-380.
[http://dx.doi.org/10.1080/14756360802187885] [PMID: 18830885]
[167]
Li, H.; Zhang, Q. Research progress of flavonoids regulating endothelial function. Pharmaceuticals, 2023, 16(9), 1201.
[http://dx.doi.org/10.3390/ph16091201] [PMID: 37765009]
[168]
Xu, H.; Yu, S.; Lin, C.; Dong, D.; Xiao, J.; Ye, Y.; Wang, M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. Phytomedicine, 2024, 126, 155409.
[http://dx.doi.org/10.1016/j.phymed.2024.155409] [PMID: 38342018]
[169]
Mazumder, A.; Sharma, A.; Azad, M.A.K. A comprehensive review of the pharmacological importance of dietary flavonoids as hepatoprotective agents. Evid-Based Compl Altern Med, 2023, 2023, 4139117.
[170]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18(1), 241-272.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[171]
Jiang, M.; Zhu, M.; Wang, L.; Yu, S. Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed. Pharmacother., 2019, 120, 109506.
[http://dx.doi.org/10.1016/j.biopha.2019.109506] [PMID: 31586904]
[172]
Semwal, D.; Semwal, R.; Combrinck, S.; Viljoen, A. Myricetin: A dietary molecule with diverse biological activities. Nutrients, 2016, 8(2), 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[173]
Ono, K.; Li, L.; Takamura, Y.; Yoshiike, Y.; Zhu, L.; Han, F.; Mao, X.; Ikeda, T.; Takasaki, J.; Nishijo, H.; Takashima, A.; Teplow, D.B.; Zagorski, M.G.; Yamada, M. Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J. Biol. Chem., 2012, 287(18), 14631-14643.
[http://dx.doi.org/10.1074/jbc.M111.325456] [PMID: 22393064]
[174]
Li, M.; Chen, J.; Yu, X.; Xu, S.; Li, D.; Zheng, Q.; Yin, Y. Myricetin suppresses the propagation of hepatocellular carcinoma via down-regulating expression of YAP. Cells, 2019, 8(4), 358.
[http://dx.doi.org/10.3390/cells8040358] [PMID: 30999669]
[175]
Essex, D.W.; Wu, Y. Multiple protein disulfide isomerases support thrombosis. Curr. Opin. Hematol., 2018, 25(5), 395-402.
[http://dx.doi.org/10.1097/MOH.0000000000000449] [PMID: 29994898]
[176]
Gaspar, R.S.; da Silva, S.A.; Stapleton, J.; Fontelles, J.L.L.; Sousa, H.R.; Chagas, V.T.; Alsufyani, S.; Trostchansky, A.; Gibbins, J.M.; Paes, A.M.A. Myricetin, the main Flavonoid in Syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases PDI and ERp5. Front. Pharmacol., 2020, 10, 1678.
[http://dx.doi.org/10.3389/fphar.2019.01678] [PMID: 32116678]
[177]
Feng, B.Y.; Simeonov, A.; Jadhav, A.; Babaoglu, K.; Inglese, J.; Shoichet, B.K.; Austin, C.P. A high-throughput screen for aggregation-based inhibition in a large compound library. J. Med. Chem., 2007, 50(10), 2385-2390.
[http://dx.doi.org/10.1021/jm061317y] [PMID: 17447748]
[178]
Babaoglu, K.; Simeonov, A.; Irwin, J.J.; Nelson, M.E.; Feng, B.; Thomas, C.J.; Cancian, L.; Costi, M.P.; Maltby, D.A.; Jadhav, A.; Inglese, J.; Austin, C.P.; Shoichet, B.K. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against β-lactamase. J. Med. Chem., 2008, 51(8), 2502-2511.
[http://dx.doi.org/10.1021/jm701500e] [PMID: 18333608]
[179]
Xiao, J.; Kai, G. A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr., 2012, 52(1), 85-101.
[http://dx.doi.org/10.1080/10408398.2010.499017] [PMID: 21991992]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy