Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

A Pharmacological Update of Triazole Derivative: A Review

In Press, (this is not the final "Version of Record"). Available online 25 July, 2024
Author(s): Venkatesan Parthasarathi and Hemalatha Kanagaraj*
Published on: 25 July, 2024

DOI: 10.2174/0115680266308359240708094001

Price: $95

Abstract

Recently, a large number of novel heterocyclic compounds and their derivatives have been synthesized, and studies on their biological functions have been conducted. Even though the triazole moiety of this scaffold appears to be fairly small, many researchers are interested in it be-cause of its biological profile and variety of potential uses. Triazole derivatives have been synthe-sized and published by various researchers as their important characteristic against various dis-eases. Several researchers are interested in this scaffold because of its biological profile and wide variety of potential uses, even if its triazole moiety seems to be somewhat less. The derivative of this heterocyclic ring produced various biological activities such as anti-inflammatory, anticon-vulsant, hypoglycemic, antitubercular, anxiolytic, antimicrobial, antitumor, and anticancer. The current review article focuses on pharmacological profile associated with triazoles and mainly fo-cuses on structural modification done for various targets, along with a brief description of targets.

[1]
Karaca Gençer, H.; Acar Çevik, U.; Levent, S.; Sağlık, B.; Korkut, B.; Özkay, Y.; Ilgın, S.; Öztürk, Y. New benzimidazole-1,2,4-triazole hybrid compounds: Synthesis, anticandidal activity and cytotoxicity evaluation. Molecules, 2017, 22(4), 507.
[http://dx.doi.org/10.3390/molecules22040507] [PMID: 28346364]
[2]
Mansoory, J.H.; Rajput, S.S. Synthesis, reactivity and biological evaluation of triazole: recent developments. IJPPS, 2015, 7(5), 20-32.
[3]
Uygun, Y.; Bayrak, H.; Özkan, H. Synthesis and biological activities of methylenebis-4$H$-1,2,4-triazole derivatives. Turk. J. Chem., 2013, 37, 812-824.
[http://dx.doi.org/10.3906/kim-1212-66]
[4]
Lala Ram, J.; Vandana, S.; Richa, A. A Review on Synthesis and Biological Activity of 1,2,4-triazole Derivatives. Int. J. Pharm. Sci. Rev. Res., 2023, 79(1), 84-91.
[5]
Al-Omar, M.A.; Al-Abdullah, E.S.; Shehata, I.A.; Habib, E.E.; Ibrahim, T.M.; El-Emam, A.A. Synthesis, antimicrobial, and anti-inflammatory activities of novel 5-(1-adamantyl)-4-arylidene- amino-3-mercapto-1,2,4-triazoles and related derivatives. Molecules, 2010, 15(4), 2526-2550.
[http://dx.doi.org/10.3390/molecules15042526] [PMID: 20428062]
[6]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[7]
Sargsyan, A.B.; Avakyan, A.S.; Vartanyan, S.O.; Stepanyan, G.M.; Paronikyan, R.V. Synthesis of new 1,4-benzodioxanyl-1,2,4-triazole derivatives. Russ. J. Gen. Chem., 2018, 88(4), 839-842.
[http://dx.doi.org/10.1134/S1070363218040345]
[8]
Bezerra Morais, P.A.; Javarini, C.L.; Valim, T.C.; Francisco, C.S.; de Freitas Ferreira, L.C.; Trancoso Bottocim, R.R.; Neto, Á.C.; Júnior, V.L.; Ramon, R.; Neto, Á.C.; Júnior, V.L. Triazole: A New Perspective in Medicinal Chemistry and Material Science. Curr. Org. Chem., 2022, 26(18), 1691-1702.
[http://dx.doi.org/10.2174/1385272827666221213145147]
[9]
Shafiei, M.; Peyton, L.; Hashemzadeh, M.; Foroumadi, A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg. Chem., 2020, 104104240.
[http://dx.doi.org/10.1016/j.bioorg.2020.104240] [PMID: 32906036]
[10]
Gomha, S.; Ahmed, S.; Abdelhamid, A. Synthesis and cytotoxicity evaluation of some novel thiazoles, thiadiazoles, and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-ones incorporating triazole moiety. Molecules, 2015, 20(1), 1357-1376.
[http://dx.doi.org/10.3390/molecules20011357] [PMID: 25594346]
[11]
Sharma, B.; Verma, A.; Prajapati, S.; Sharma, U.K. Synthetic methods, chemistry, and the anticonvulsant activity of thiadiazoles. Int. J. Med. Chem., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/348948] [PMID: 25405032]
[12]
Idrees, M.; Kola, S.; Siddiqui, N.J. Synthesis of Novel Series of Quinolino[3,2-f][1,2,4]triazolo[3,4-b][1,3,4]-thiadiazepines Derivatives Incorporated with 3-[5-(benzofuran-2-yl)-1-phenyl-1H-pyrazol-3-yl] Moiety as Potent Antimicrobial Agent. Asian J. Chem., 2018, 30(9), 2129-2133.
[http://dx.doi.org/10.14233/ajchem.2018.21483]
[13]
Zahran, F.; Abdel Latif, F.; Sayed, A.; Shaban, R.; Keshta, A. Biological studies of the effect of some new synthetic triazole derivatives on Ehrlich Ascites Carcinoma cells. Int J Biol Pharm Res, 2013, 4, 261-270.
[14]
Khan, S.A.; Imam, S.M.; Ahmad, A.; Basha, S.H.; Husain, A. Synthesis, molecular docking with COX 1& II enzyme, ADMET screening and in vivo anti-inflammatory activity of oxadiazole, thiadiazole and triazole analogs of felbinac. J. Saudi Chem. Soc., 2018, 22(4), 469-484.
[http://dx.doi.org/10.1016/j.jscs.2017.05.006]
[15]
Prajapati, S.; Goswami, K.; Patal, A. Synthesis and characterisation of 4-Aryl thiazole ring system and its antimicrobial activity. Int. J. Pharma Bio Sci., 2013, 4(1), 803-808.
[16]
Frolova, Y. Design, synthesis, antimicrobial and antifungal activities of new 1,2,4-triazole derivatives containing 1H-tetrazole moiety. Ankara Universitesi Eczacilik Fakultesi Dergisi, 2020, 44(1), 70-88.
[http://dx.doi.org/10.33483/jfpau.574001]
[17]
Singh, R.; Chouhan, A. Important methods of synthesis and biological significance of 1,2,4-triazole derivatives. World J. Pharm. Pharm. Sci., 2014, 3(8), 874-906.
[18]
Kumar, R.; Yar, M.S.; Chaturvedi, S.; Srivastava, A. Triazole as pharmaceuticals potentials. Int. J. Pharm. Tech. Res., 2013, 5, 1844-1869.
[19]
Alagarsamy, V synthesis and antimicrobial activity of compound 1,4-disubstituted-1,2,4-triazolo[4,3-a]-quinazolin-5(4H)-ones. Asian J. Biiochem. Pharmaceut. Res., 2011, 1, 88-101.
[20]
Datar, P. synthesis and anticancer activity of compound imidazolidinyl-triazolidin-5-thione derivatives. Asian J. Biiochem. Pharmaceut. Res., 2011, 1, 88-101.
[21]
Danilchenko, D.M.; Safonov, A.A. Diuretic activity of 2-((4-amino-5-R-4H-1,2,4-triazole-3-yl)thio)acetohydrazides. Zaporozhye Medical Journal, 2017, 0(4), 517-519.
[http://dx.doi.org/10.14739/2310-1210.2017.4.105283]
[22]
Ihnatova, T.; Kaplaushenko, A.; Frolova, Y.; Pryhlo, E. Synthesis and antioxidant properties of some new 5-phenethyl-3-thio-1,2,4-triazoles. Pharmacia, 2021, 68(1), 129-133.
[http://dx.doi.org/10.3897/pharmacia.68.e53320]
[23]
Page, A.V.; Liles, W.C. Posaconazole: A new agent for the prevention and management of severe, refractory or invasive fungal infections. Can. J. Infect. Dis. Med. Microbiol., 2008, 19(4), 297-305.
[http://dx.doi.org/10.1155/2008/825901] [PMID: 19436511]
[24]
Hollier, L.M.; Cox, S.M. Fluconazole (Diflucan®). Infect. Dis. Obstet. Gynecol., 1995, 3(6), 222-225.
[http://dx.doi.org/10.1155/S1064744995000676] [PMID: 18476045]
[25]
Arikan, S.; Rex, J.H. Ravuconazole Eisai/Bristol-Myers Squibb. Curr. Opin. Investig. Drugs, 2002, 3(4), 555-561.
[PMID: 12090723]
[26]
Prentice, A.G.; Glasmacher, A. Making sense of itraconazole pharmacokinetics. J. Antimicrob. Chemother., 2005, 56(Suppl. 1), i17-i22.
[http://dx.doi.org/10.1093/jac/dki220] [PMID: 16120630]
[27]
Thomas, E.; Ghany, M.G.; Liang, T.J. The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir. Chem. Chemother., 2012, 23(1), 1-12.
[28]
Juergens, S. Alprazolam and diazepam: Addiction potential. J. Subst. Abuse Treat., 1991, 8(1-2), 43-51.
[http://dx.doi.org/10.1016/0740-5472(91)90026-7] [PMID: 2051498]
[29]
Watts, C.; Martin, T.L. Etizolam Blood Concentrations in 191 Forensic Cases in Ontario, Canada (2019-2020). J. Anal. Toxicol., 2022, 46(7), 719-725.
[http://dx.doi.org/10.1093/jat/bkab106] [PMID: 34570874]
[30]
Calderon, A.; Soldan, S.S.; De Leo, A.; Deng, Z.; Frase, D.M.; Anderson, E.M.; Zhang, Y.; Vladimirova, O.; Lu, F.; Leung, J.C.; Murphy, M.E.; Lieberman, P.M. Identification of Mubritinib (TAK 165) as an inhibitor of KSHV driven primary effusion lymphoma via disruption of mitochondrial OXPHOS metabolism. Oncotarget, 2020, 11(46), 4224-4242.
[http://dx.doi.org/10.18632/oncotarget.27815] [PMID: 33245718]
[31]
Neu, H.C.; Fu, K.P. Cefatrizine activity compared with that of other cephalosporins. Antimicrob. Agents Chemother., 1979, 15(2), 209-212.
[http://dx.doi.org/10.1128/AAC.15.2.209] [PMID: 426514]
[32]
Shah, P.J.; Ryzner, K.L. Evaluating the appropriate use of piperacillin/tazobactam in a community health system: a retrospective chart review. P&T, 2013, 38(8), 462-483.
[PMID: 24222978]
[33]
Wright, J.M.; Musini, V.M.; Gill, R. First-line drugs for hypertension. Cochrane Database Syst. Rev., 2018, 4(4), CD001841.
[PMID: 29667175]
[34]
Mioc, M.; Avram, S.; Bercean, V.; Kurunczi, L.; Ghiulai, R.M.; Oprean, C.; Coricovac, D.E.; Dehelean, C.; Mioc, A.; Balan-Porcarasu, M.; Tatu, C.; Soica, C. Design, synthesis and biological activity evaluation of S-substituted 1H-5-mercapto-1,2,4-triazole derivatives as antiproliferative agents in colorectal cancer. Front Chem., 2018, 6, 373.
[http://dx.doi.org/10.3389/fchem.2018.00373] [PMID: 30234098]
[35]
Pagniez, F.; Lebouvier, N.; Na, Y.M.; Ourliac-Garnier, I.; Picot, C.; Le Borgne, M.; Le Pape, P. Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 398-403.
[http://dx.doi.org/10.1080/14756366.2019.1705292] [PMID: 31899979]
[36]
Palekar, V.S.; Damle, A.J.; Shukla, S.R. Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide. Eur. J. Med. Chem., 2009, 44(12), 5112-5116.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.023] [PMID: 19683841]
[37]
Jacob, J.H.; Irshaid, F.I.; Al-Soud, Y.A. Antibacterial activity of some selected 1,2,4-triazole derivatives against standard, environmental, and medical bacterial strains. Adv. Stud. Biol., 2013, 5(6), 291-301.
[http://dx.doi.org/10.12988/asb.2013.3418]
[38]
Lipeeva, A.V.; Zakharov, D.O.; Burova, L.G.; Frolova, T.S.; Baev, D.S.; Shirokikh, I.V.; Evstropov, A.N.; Sinitsyna, O.I.; Tolsikova, T.G.; Shults, E.E. Design, synthesis and antibacterial activity of coumarin-1,2,3-triazole hybrids obtained from natural furocoumarin peucedanin. Molecules, 2019, 24(11), 2126-2149.
[http://dx.doi.org/10.3390/molecules24112126] [PMID: 31195697]
[39]
Turan-Zitouni, G.; Kaplancıklı, Z.A.; Yıldız, M.T.; Chevallet, P.; Kaya, D. Synthesis and antimicrobial activity of 4-phenyl/cyclohe-xyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1,2,] 4-triazole derivatives. Eur. J. Med. Chem., 2005, 40(6), 607-613.
[http://dx.doi.org/10.1016/j.ejmech.2005.01.007] [PMID: 15922844]
[40]
Holla, B.S.; Mahalinga, M.; Karthikeyan, M.S.; Poojary, B.; Akberali, P.M.; Kumari, N.S. Synthesis, characterization and antimicrobial activity of some substituted 1,2,3-triazoles. Eur. J. Med. Chem., 2005, 40(11), 1173-1178.
[http://dx.doi.org/10.1016/j.ejmech.2005.02.013] [PMID: 15979767]
[41]
Yang, L.; Ge, S.; Huang, J.; Bao, X. Synthesis of novel (E)-2-(4-(1H-1,2,4-triazol-1-yl)styryl)-4- (alkyl/arylmethyleneoxy)quinazo-line derivatives as antimicrobial agents. Mol. Divers., 2018, 22(1), 71-82.
[http://dx.doi.org/10.1007/s11030-017-9792-1] [PMID: 29119421]
[42]
Bektaş, H.; Karaali, N.; Şahin, D.; Demirbaş, A.; Karaoglu, Ş.A.; Demirbaş, N. Synthesis and Antimicrobial Activities of Some New 1,2,4-Triazole Derivatives. Molecules, 2010, 15(4), 2427-2438.
[http://dx.doi.org/10.3390/molecules15042427] [PMID: 20428053]
[43]
Isloor, A.M.; Kalluraya, B.; Shetty, P. Regioselective reaction: Synthesis, characterization and pharmacological studies of some new Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 2009, 44(9), 3784-3787.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.038] [PMID: 19464087]
[44]
Pokrovskaya, V.; Belakhov, V.; Hainrichson, M.; Yaron, S.; Baasov, T. Design, synthesis, and evaluation of novel fluoroquinolone-aminoglycoside hybrid antibiotics. J. Med. Chem., 2009, 52(8), 2243-2254.
[http://dx.doi.org/10.1021/jm900028n] [PMID: 19301822]
[45]
Sobhi, M.G.; Mastoura, M.E.; Zeinab, A.M.; Nabila, A.K.; Sraa Abu, M.; Amirah, M.S. Synthesis, Characterization, and Antimicrobial Evaluation of Some New 1,4-Dihydropyridines-1,2,4-Triazole Hybrid Compounds. Polycycl. Aromat. Compd., 2020.
[46]
Snider, D.E.; Raviglione, M., Jr; Kochi, A. Global burden of tuberculosis, chapter 1. In: Tuberculosis: Pathogenisis, Protection, and Control; American society for Microbiology: Washington, DC 20005., 1994; pp. 3-11.
[47]
Ballell, L.; Field, R.A.; Duncan, K.; Young, R.J. New small-molecule synthetic antimycobacterials. Antimicrob. Agents Chemother., 2005, 49(6), 2153-2163.
[http://dx.doi.org/10.1128/AAC.49.6.2153-2163.2005] [PMID: 15917508]
[48]
Spigelman, M.K. New tuberculosis therapeutics: a growing pipeline. J. Infect. Dis., 2007, 196(s1)(Suppl. 1), S28-S34.
[http://dx.doi.org/10.1086/518663] [PMID: 17624823]
[49]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; Ferreira, M.L.G.; da Silva, F.C.; Bastos, M.M.; Costa, M.S.; Lourenço, M.C.S.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.C.; Bezerra, F.A.F.M.; Camilo, A.L.S.; da Silva, G.P.; Costa, C.C.P. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem., 2011, 54(17), 5988-5999.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[50]
Ramprasad, J.; Kumar Sthalam, V.; Linga Murthy Thampunuri, R.; Bhukya, S.; Ummanni, R.; Balasubramanian, S.; Pabbaraja, S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett., 2019, 29(20), 126671.
[http://dx.doi.org/10.1016/j.bmcl.2019.126671] [PMID: 31526604]
[51]
Gill, C.; Jadhav, G.; Shaikh, M.; Kale, R.; Ghawalkar, A.; Nagargoje, D.; Shiradkar, M. Clubbed [1,2,3] triazoles by fluorine benzimidazole: A novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6244-6247.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.096] [PMID: 18930654]
[52]
Özdemir, A.; Turan-Zitouni, G.; Asim Kaplancikli, Z.; Chevallet, P. Synthesis of some 4-arylidenamino-4H-1,2,4-triazole-3-thiols and their antituberculosis activity. J. Enzyme Inhib. Med. Chem., 2007, 22(4), 511-516.
[http://dx.doi.org/10.1080/14756360601178424] [PMID: 17847720]
[53]
Küçükgüzel, I.; Küçükgüzel, S.G.; Rollas, S.; Kiraz, M. Some 3-Thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials. Bioorg. Med. Chem. Lett., 2001, 11(13), 1703-1707.
[http://dx.doi.org/10.1016/S0960-894X(01)00283-9] [PMID: 11425542]
[54]
Singh, R.; Kashaw, S.K.; Mishra, V.K.; Mishra, M.; Rajoriya, V.; Kashaw, V. Design and Synthesis of New Bioactive 1,2,4-Triazoles, Potential Antitubercular and Antimicrobial Agents. Indian J. Pharm. Sci., 2018, 80(1), 36-45.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000328] [PMID: 23901159]
[55]
Shiradkar, M.; Suresh Kumar, G.V.; Dasari, V.; Tatikonda, S.; Akula, K.C.; Shah, R. Clubbed triazoles: A novel approach to antitubercular drugs. Eur. J. Med. Chem., 2007, 42(6), 807-816.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.001] [PMID: 17239490]
[56]
Kaplancikli, Z.A.; Turan-Zitouni, G.; Chevallet, P. Synthesis and antituberculosis activity of new 3-alkylsulfanyl-1,2,4-triazole derivatives. J. Enzyme Inhib. Med. Chem., 2005, 20(2), 179-182.
[http://dx.doi.org/10.1080/14756360500043471] [PMID: 15968822]
[57]
Sravanthi, B.; Kaviarasan, L.; Praveen, T.K.; Pindiprolu, S.S. Sai Kiran.; Pavankumar, C; Gowramma, B. Synthesis and Pharmacological Evaluation of 1, 3, 4-Thiadiazole bearing Pyrimidine Derivatives as STAT3 Inhibitor for Treatment of Breast Cancer. J. Indian Chem. Soc., 2020, 17, 2359-2370.
[58]
Kaviarasan, L.; Gowramma, B.; Kalirajan, R.; Mevithra, M.; Chandralekha, S. Molecular docking studies and synthesis of a new class of chroman 4 one fused 1,3,4 thiadiazole derivatives and evaluation for their anticancer potential. J. Indian Chem. Soc., 2020, 17, 2083-2094.
[59]
Kaviarasan, L.; Gowramma, B.; Manal, M. A Brief Review on Dual Target of PARP1 and STAT3 for Cancer Therapy: A Novel Perception. Curr. Enzym. Inhib., 2020, 16, 1-20.
[60]
Lakshmanan, K.; Byran, G.; Bandlamudi, S.; Krishnamurthy, P.T. The Role of STAT3 Signaling in Different Types of Cancers: A Comprehensive Review. Curr. Enzym. Inhib., 2020, 16(3), 189-198.
[http://dx.doi.org/10.2174/1573408016999200708160300]
[61]
Dilipkumar, S.; Karthik, V.; Dk, S.; Gowramma, B.; Lakshmanan, K. In-silico screening and molecular dynamics simulation of quinazolinone derivatives as PARP1 and STAT3 dual inhibitors: a novel DML approaches. J. Biomol. Struct. Dyn., 2023, 1-11.
[http://dx.doi.org/10.1080/07391102.2023.2259476] [PMID: 37735921]
[62]
Farghaly, T.A.E.R.; Abdallah, M.A.; Mahmoud, H.K. Synthesis of novel 1,2,4-triazoles and triazolo-thiadiazines as anticancer agents. Turk. J. Chem., 2015, 39, 955-969.
[http://dx.doi.org/10.3906/kim-1504-13]
[63]
Yang, J.G.; Pan, F.Y. New 3-[(4-Hydroxy-6-Methly-2(1H)-Pyridinones)-3-yl]-4-Substituted-(1H)-1,2,4-Triazole-5-Thiones: Efficient Synthesis, X-Ray Crystallographic Analysis, and Antitumor Activity. Lett. Org. Chem., 2007, 4(2), 137-141.
[http://dx.doi.org/10.2174/157017807780414181]
[64]
Gomha, S.M.; Abdel-aziz, H.M.; Badrey, M.G.; Abdulla, M.M. Efficient Synthesis of Some New 1,3,4‐Thiadiazoles and 1,2,4‐Triazoles Linked to Pyrazolylcoumarin Ring System as Potent 5α‐Reductase Inhibitors. J. Heterocycl. Chem., 2019, 56(4), 1275-1282.
[http://dx.doi.org/10.1002/jhet.3487]
[65]
Zhai, X.; Zhao, Y.F.; Liu, Y.J.; Zhang, Y.; Xun, F.Q.; Liu, J.; Gong, P. Synthesis and cytotoxicity studies of novel[1,2,4]tria-zolo[1,5-a]pyrimidine-7-amines. Chem. Pharm. Bull. (Tokyo), 2008, 56(7), 941-945.
[http://dx.doi.org/10.1248/cpb.56.941] [PMID: 18591806]
[66]
Dhawan, S.; Awolade, P.; Kisten, P.; Cele, N.; Pillay, A.S.; Saha, S.; Kaur, M.; Jonnalagadda, S.B.; Singh, P. Synthesis, cytotoxicity and antimicrobial evaluation of new coumarin-tagged beta-lactam triazole hybrid. Chem. Biodivers., 2020, 17(1), e1900462.
[http://dx.doi.org/10.1002/cbdv.201900462] [PMID: 31788939]
[67]
Carretero, O.A.; Oparil, S. Essential Hypertension. Circulation, 2000, 101(3), 329-335.
[http://dx.doi.org/10.1161/01.CIR.101.3.329] [PMID: 10645931]
[68]
Guyton.; Hall.; John E. Hall Textbook of Medical Physiology; Elsevier, 2005, Vol. 7, .
[69]
Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr; Roccella, E.J. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension, 2003, 42(6), 1206-1252.
[http://dx.doi.org/10.1161/01.HYP.0000107251.49515.c2] [PMID: 14656957]
[70]
Ashton, W.T.; Cantone, C.L.; Chang, L.L.; Hutchins, S.M.; Strelitz, R.A.; MacCoss, M.; Chang, R.S.L.; Lotti, V.J.; Faust, K.A.; Chen, T.B. Nonpeptide angiotensin II antagonists derived from 4H-1,2,4-triazoles and 3H-imidazo[1,2-b][1,2,4]triazoles. J. Med. Chem., 1993, 36(5), 591-609.
[http://dx.doi.org/10.1021/jm00057a009] [PMID: 8496939]
[71]
Okazaki, T.; Suga, A.; Watanabe, T.; Kikuchi, K.; Kurihara, H.; Shibasaki, M.; Fujimori, A.; Inagaki, O.; Yanagisawa, U. Studies on nonpeptide angiotensin II receptor antagonists. I. Synthesis and biological evaluation of pyrazolo[1,5-b][1,2,4]triazole derivatives with alkyl substituents. Chem. Pharm. Bull. (Tokyo), 1998, 46(1), 69-78.
[http://dx.doi.org/10.1248/cpb.46.69] [PMID: 9468638]
[72]
Kakefuda, A.; Suzuki, T.; Tobe, T.; Tsukada, J.; Tahara, A.; Sakamoto, S.; Tsukamoto, S. Synthesis and pharmacological evaluation of 5-(4-biphenyl)-3-methyl-4-phenyl-1,2,4-triazole derivatives as a novel class of selective antagonists for the human vasopressin V(1A) receptor. J. Med. Chem., 2002, 45(12), 2589-2598.
[http://dx.doi.org/10.1021/jm010544r] [PMID: 12036368]
[73]
Papatheodorou, K.; Banach, M.; Bekiari, E.; Rizzo, M.; Edmonds, M. Complications of Diabetes 2017. J. Diabetes Res., 2018, 2018, 1-4.
[http://dx.doi.org/10.1155/2018/3086167] [PMID: 29713648]
[74]
LeRoith, D.; Biessels, G.J.; Braithwaite, S.S.; Casanueva, F.F.; Draznin, B.; Halter, J.B.; Hirsch, I.B.; McDonnell, M.E.; Molitch, M.E.; Murad, M.H.; Sinclair, A.J. Treatment of diabetes in older adults: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab., 2019, 104(5), 1520-1574.
[http://dx.doi.org/10.1210/jc.2019-00198] [PMID: 30903688]
[75]
Gout-Zwart, J.J.; de Jong, L.A.; Saptenno, L.; Postma, M.J. Budget impact analysis of metformin sustained release for the treatment of type 2 diabetes in the Netherlands. PharmacoEconom. Open, 2020, 4(2), 321-330.
[http://dx.doi.org/10.1007/s41669-019-00179-6] [PMID: 31535305]
[76]
Zhu, Y.; Olson, S.H.; Graham, D.; Patel, G.; Hermanowski-Vosatka, A.; Mundt, S.; Shah, K.; Springer, M.; Thieringer, R.; Wright, S.; Xiao, J.; Zokian, H.; Dragovic, J.; Balkovec, J.M. Phenylcyclobutyl triazoles as selective inhibitors of 11β-hydroxy-] steroid dehydrogenase type I. Bioorg. Med. Chem. Lett., 2008, 18(11), 3412-3416.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.014] [PMID: 18440812]
[77]
Ebdrup, S.; Sørensen, L.G.; Olsen, O.H.; Jacobsen, P. Synthesis and structure-activity relationship for a novel class of potent and selective carbamoyl-triazole based inhibitors of hormone sensitive lipase. J. Med. Chem., 2004, 47(2), 400-410.
[http://dx.doi.org/10.1021/jm031004s] [PMID: 14711311]
[78]
Mohamed, M.A.A.; Abd Allah, O.A.; Bekhit, A.A.; Kadry, A.M.; El-Saghier, A.M.M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J. Heterocycl. Chem., 2020, 57(6), 2365-2378.
[http://dx.doi.org/10.1002/jhet.3951]
[79]
Karakurt, A.; Aytemir, M.D.; Stables, J.P.; Özalp, M.; Betül Kaynak, F.; Özbey, S.; Dalkara, S. Synthesis of some oxime ether derivatives of 1-(2-naphthyl)-2-(1,2,4-triazol-1-yl)ethanone and their anticonvulsant and antimicrobial activities. Arch. Pharm. (Weinheim), 2006, 339(9), 513-520.
[http://dx.doi.org/10.1002/ardp.200500248] [PMID: 16941729]
[80]
Praveen, S.; Kumar, A.; Parveen, B.R. Sonu.; Pal, H. Synthesis and biological evaluation of some new Schiff base 1,2,4-triazole derivatives. IJPC, 2017, 7(6), 95-99.
[81]
Poulsen, S.A.; Wilkinson, B.L.; Innocenti, A.; Vullo, D.; Supuran, C.T. Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg. Med. Chem. Lett., 2008, 18(16), 4624-4627.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.010] [PMID: 18644716]
[82]
Dobbs, K.D.; Feldman, J.; Marshall, W.J.; McLain, S.J.; McLaren, C.D.; Meth, J.S.; Vo, G.D.; Wang, Y. Phosphorescent Iridium(III) Complexes of Cyclometalated 5-Aryl-1 H -1,2,4-Triazole Ligands: Structural, Computational, Spectroscopic, and Device Studies. J. Phys. Chem. C, 2014, 118(48), 27763-27771.
[http://dx.doi.org/10.1021/jp5096322]
[83]
Izatt, R.M.; Lindh, G.C.; Bruening, R.L.; Huszthy, P.; McDaniel, C.W.; Bradshaw, J.S.; Christensen, J.J. Separation of silver from other metal cations using pyridone and triazole macrocycles in liquid membrane systems. Anal. Chem., 1988, 60(17), 1694-1699.
[http://dx.doi.org/10.1021/ac00168a013]
[84]
Ullmann, A.J.; Cornely, O.A.; Burchardt, A. Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob. Agents Chemother., 2006, 50(2), 658-666.
[http://dx.doi.org/10.1128/AAC.50.2.658-666.2006]
[85]
Rüping, M.J.G.T.; Albermann, N.; Ebinger, F.; Burckhardt, I.; Beisel, C.; Müller, C.; Vehreschild, J.J.; Kochanek, M.; Fätkenheuer, G.; Bangard, C.; Ullmann, A.J.; Herr, W.; Kolbe, K.; Hallek, M.; Cornely, O.A. Posaconazole concentrations in the central nervous system. J. Antimicrob. Chemother., 2008, 62(6), 1468-1470.
[http://dx.doi.org/10.1093/jac/dkn409] [PMID: 18824458]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy