Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

The Agonistic Activity of the Human Epidermal Growth Factor is Reduced by the D46G Substitution

In Press, (this is not the final "Version of Record"). Available online 22 July, 2024
Author(s): Anastasia Aleksandrovna Akunevich*, Vladislav Victorovich Khrustalev, Tatyana Aleksandrovna Khrustaleva and Marina Anatolyevna Yermalovich
Published on: 22 July, 2024

DOI: 10.2174/0109298665297321240708044223

Abstract

Background: Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment.

Methods: EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 μg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 μg/kg dose was studied.

Results: The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular β- sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days.

Conclusion: EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.

[1]
Yu, X.; Sharma, K.D.; Takahashi, T.; Iwamoto, R.; Mekada, E. Ligand-independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand-induced EGFR signaling. Mol. Biol. Cell, 2002, 13(7), 2547-2557.
[http://dx.doi.org/10.1091/mbc.01-08-0411] [PMID: 12134089]
[2]
Zanetti-Domingues, L.C.; Korovesis, D.; Needham, S.R.; Tynan, C.J.; Sagawa, S.; Roberts, S.K.; Kuzmanic, A.; Ortiz-Zapater, E.; Jain, P.; Roovers, R.C.; Lajevardipour, A.; van Bergen en Henegouwen, P.M.P.; Santis, G.; Clayton, A.H.A.; Clarke, D.T.; Gervasio, F.L.; Shan, Y.; Shaw, D.E.; Rolfe, D.J.; Parker, P.J.; Martin-Fernandez, M.L. The architecture of EGFR’s basal complexes reveals autoinhibition mechanisms in dimers and oligomers. Nat. Commun., 2018, 9(1), 4325.
[http://dx.doi.org/10.1038/s41467-018-06632-0] [PMID: 30337523]
[3]
Liu, P.; Cleveland, T.E., IV; Bouyain, S.; Byrne, P.O.; Longo, P.A.; Leahy, D.J. A single ligand is sufficient to activate EGFR dimers. Proc. Natl. Acad. Sci., 2012, 109(27), 10861-10866.
[http://dx.doi.org/10.1073/pnas.1201114109] [PMID: 22699492]
[4]
Chung, I.; Akita, R.; Vandlen, R.; Toomre, D.; Schlessinger, J.; Mellman, I. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature, 2010, 464(7289), 783-787.
[http://dx.doi.org/10.1038/nature08827] [PMID: 20208517]
[5]
Akunevich, A.A.; Khrustalev, V.V.; Khrustaleva, T.A.; Poboinev, V.V.; Shalygo, N.V.; Stojarov, A.N.; Arutyunyan, A.M.; Kordyukova, L.V.; Sapon, Y.G. Equilibrium between dimeric and monomeric forms of human epidermal growth factor is shifted towards dimers in a solution. Protein J., 2022, 41(2), 245-259.
[http://dx.doi.org/10.1007/s10930-022-10051-y] [PMID: 35348971]
[6]
Ogiso, H.; Ishitani, R.; Nureki, O.; Fukai, S.; Yamanaka, M.; Kim, J.H.; Saito, K.; Sakamoto, A.; Inoue, M.; Shirouzu, M.; Yokoyama, S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 2002, 110(6), 775-787.
[http://dx.doi.org/10.1016/S0092-8674(02)00963-7] [PMID: 12297050]
[7]
Huang, H.W.; Mohan, S.K.; Yu, C. The NMR solution structure of human epidermal growth factor (hEGF) at physiological pH and its interactions with suramin. Biochem. Biophys. Res. Commun., 2010, 402(4), 705-710.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.089] [PMID: 21029725]
[8]
Panosa, C.; Tebar, F.; Ferrer-Batallé, M.; Fonge, H.; Seno, M.; Reilly, R.M.; Massaguer, A.; De Llorens, R. Development of an epidermal growth factor derivative with EGFR blocking activity. PLoS One, 2013, 8(7), e69325.
[http://dx.doi.org/10.1371/journal.pone.0069325] [PMID: 23935985]
[9]
Kovacs, E.; Zorn, J.A.; Huang, Y.; Barros, T.; Kuriyan, J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu. Rev. Biochem., 2015, 84(1), 739-764.
[http://dx.doi.org/10.1146/annurev-biochem-060614-034402] [PMID: 25621509]
[10]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[11]
Conte, A.; Sigismund, S. The ubiquitin network in the control of EGFR endocytosis and signaling. Prog. Mol. Biol. Transl. Sci., 2016, 141, 225-276.
[http://dx.doi.org/10.1016/bs.pmbts.2016.03.002] [PMID: 27378759]
[12]
Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in Cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers, 2021, 13(11), 2748.
[http://dx.doi.org/10.3390/cancers13112748] [PMID: 34206026]
[13]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[14]
Martinelli, E.; De Palma, R.; Orditura, M.; De Vita, F.; Ciardiello, F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin. Exp. Immunol., 2009, 158(1), 1-9.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03992.x] [PMID: 19737224]
[15]
Kimura, H.; Sakai, K.; Arao, T.; Shimoyama, T.; Tamura, T.; Nishio, K. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci., 2007, 98(8), 1275-1280.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00510.x] [PMID: 17498200]
[16]
García-Foncillas, J.; Sunakawa, Y.; Aderka, D.; Wainberg, Z.; Ronga, P.; Witzler, P.; Stintzing, S. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front. Oncol., 2019, 9, 849.
[http://dx.doi.org/10.3389/fonc.2019.00849] [PMID: 31616627]
[17]
Zubair, T.; Bandyopadhyay, D. Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities. Int. J. Mol. Sci., 2023, 24(3), 2651.
[http://dx.doi.org/10.3390/ijms24032651] [PMID: 36768973]
[18]
Zhou, J.; Ji, Q.; Li, Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res., 2021, 40(1), 328.
[http://dx.doi.org/10.1186/s13046-021-02130-2] [PMID: 34663410]
[19]
Tetsu, O.; Hangauer, M.J.; Phuchareon, J.; Eisele, D.W.; McCormick, F. Drug resistance to EGFR inhibitors in lung cancer. Chemotherapy, 2016, 61(5), 223-235.
[http://dx.doi.org/10.1159/000443368] [PMID: 26910730]
[20]
Hochmair, M.J.; Buder, A.; Schwab, S.; Burghuber, O.C.; Prosch, H.; Hilbe, W.; Cseh, A.; Fritz, R.; Filipits, M. Liquid-biopsy-based identification of EGFR T790M mutation-mediated resistance to afatinib treatment in patients with advanced EGFR mutation-positive NSCLC, and subsequent response to osimertinib. Target. Oncol., 2019, 14(1), 75-83.
[http://dx.doi.org/10.1007/s11523-018-0612-z] [PMID: 30539501]
[21]
Cheng, Z.; Cui, H.; Wang, Y.; Yang, J.; Lin, C.; Shi, X.; Zou, Y.; Chen, J.; Jia, X.; Su, L. The advance of the third-generation EGFR-TKI in the treatment of non-small cell lung cancer (Review). Oncol. Rep., 2023, 51(1), 16.
[http://dx.doi.org/10.3892/or.2023.8675] [PMID: 38063215]
[22]
Mahfoudhi, E.; Ricordel, C.; Lecuyer, G.; Mouric, C.; Lena, H.; Pedeux, R. Preclinical models for acquired resistance to third-generation EGFR inhibitors in NSCLC: Functional studies and drug combinations used to overcome resistance. Front. Oncol., 2022, 12, 853501.
[http://dx.doi.org/10.3389/fonc.2022.853501] [PMID: 35463360]
[23]
Shi, K.; Wang, G.; Pei, J.; Zhang, J.; Wang, J.; Ouyang, L.; Wang, Y.; Li, W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J. Hematol. Oncol., 2022, 15(1), 94.
[http://dx.doi.org/10.1186/s13045-022-01311-6] [PMID: 35840984]
[24]
Xu, L.; Xu, B.; Wang, J.; Gao, Y.; He, X.; Xie, T.; Ye, X.Y. Recent advances of novel fourth generation EGFR inhibitors in overcoming C797S mutation of lung cancer therapy. Eur. J. Med. Chem., 2023, 245(Pt 1), 114900.
[http://dx.doi.org/10.1016/j.ejmech.2022.114900] [PMID: 36417820]
[25]
Leto, S.M.; Trusolino, L. Primary and acquired resistance to EGFR-targeted therapies in colorectal cancer: Impact on future treatment strategies. J. Mol. Med., 2014, 92(7), 709-722.
[http://dx.doi.org/10.1007/s00109-014-1161-2] [PMID: 24811491]
[26]
Yuan, M.; Wang, Z.; Lv, W.; Pan, H. The role of anti-EGFR monoclonal antibody in mcrc maintenance therapy. Front. Mol. Biosci., 2022, 9, 870395.
[http://dx.doi.org/10.3389/fmolb.2022.870395] [PMID: 35433839]
[27]
Sur, D.; Havasi, A.; Gorzo, A.; Burz, C. A critical review of second-generation anti-EGFR monoclonal antibodies in metastatic colorectal cancer. Curr. Drug Targets, 2021, 22(9), 1034-1042.
[http://dx.doi.org/10.2174/1389450121666200727121011] [PMID: 32718285]
[28]
Ferraro, D.A.; Gaborit, N.; Maron, R.; Cohen-Dvashi, H.; Porat, Z.; Pareja, F.; Lavi, S.; Lindzen, M.; Ben-Chetrit, N.; Sela, M.; Yarden, Y. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc. Natl. Acad. Sci., 2013, 110(5), 1815-1820.
[http://dx.doi.org/10.1073/pnas.1220763110] [PMID: 23319610]
[29]
Jones, S.; King, P.J.; Antonescu, C.N.; Sugiyama, M.G.; Bhamra, A.; Surinova, S.; Angelopoulos, N.; Kragh, M.; Pedersen, M.W.; Hartley, J.A.; Futter, C.E.; Hochhauser, D. Targeting of EGFR by a combination of antibodies mediates unconventional EGFR trafficking and degradation. Sci. Rep., 2020, 10(1), 663.
[http://dx.doi.org/10.1038/s41598-019-57153-9] [PMID: 31959764]
[30]
Mansour, M.A.; AboulMagd, A.M.; Abbas, S.H.; Abdel-Rahman, H.M.; Abdel-Aziz, M. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: A critical review. RSC Advances, 2023, 13(27), 18825-18853.
[http://dx.doi.org/10.1039/D3RA02347H] [PMID: 37350862]
[31]
Lim, S.M.; Fujino, T.; Kim, C.; Lee, G.; Lee, Y.H.; Kim, D.W.; Ahn, J.S.; Mitsudomi, T.; Jin, T.; Lee, S.Y. BBT-176, a novel fourth-generation tyrosine kinase inhibitor for osimertinib-resistant EGFR mutations in non–small cell lung cancer. Clin. Cancer Res., 2023, 29(16), 3004-3016.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-3901] [PMID: 37249619]
[32]
Guerrab, A.E.; Bamdad, M.; Kwiatkowski, F.; Bignon, Y.J.; Penault-Llorca, F.; Aubel, C. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget, 2016, 7(45), 73618-73637.
[http://dx.doi.org/10.18632/oncotarget.12037] [PMID: 27655662]
[33]
ten Hoorn, S.; Sommeijer, D.W.; Elliott, F.; Fisher, D.; de Back, T.R.; Trinh, A.; Koens, L.; Maughan, T.; Seligmann, J.; Seymour, M.T.; Quirke, P.; Adams, R.; Richman, S.D.; Punt, C.J.A.; Vermeulen, L. Molecular subtype-specific efficacy of anti-EGFR therapy in colorectal cancer is dependent on the chemotherapy backbone. Br. J. Cancer, 2021, 125(8), 1080-1088.
[http://dx.doi.org/10.1038/s41416-021-01477-9] [PMID: 34253874]
[34]
Thakur, M.; Mergel, K.; Weng, A.; von Mallinckrodt, B.; Gilabert-Oriol, R.; Dürkop, H.; Melzig, M.F.; Fuchs, H. Targeted tumor therapy by epidermal growth factor appended toxin and purified saponin: An evaluation of toxicity and therapeutic potential in syngeneic tumor bearing mice. Mol. Oncol., 2013, 7(3), 475-483.
[http://dx.doi.org/10.1016/j.molonc.2012.12.004] [PMID: 23298730]
[35]
Hashimi, S.; Grant, B.; Alqurashi, N.; Alowaidi, F.; Wei, M. EGF ligand fused to truncated Pseudomonas aeruginosa exotoxin A specifically targets and inhibits EGFR-positive cancer cells. Oncol. Rep., 2018, 40(5), 2690-2697.
[http://dx.doi.org/10.3892/or.2018.6685] [PMID: 30226622]
[36]
Niesler, N.; Arndt, J.; Silberreis, K.; Fuchs, H. Generation of a soluble and stable apoptin-EGF fusion protein, a targeted viral protein applicable for tumor therapy. Protein Expr. Purif., 2020, 175, 105687.
[http://dx.doi.org/10.1016/j.pep.2020.105687] [PMID: 32681952]
[37]
Qi, Z.; Qiu, Y.; Wang, Z.; Zhang, H.; Lu, L.; Liu, Y.; Mathes, D.; Pomfret, E.A.; Gao, D.; Lu, S.L.; Wang, Z. A novel diphtheria toxin-based bivalent human EGF fusion toxin for treatment of head and neck squamous cell carcinoma. Mol. Oncol., 2021, 15(4), 1054-1068.
[http://dx.doi.org/10.1002/1878-0261.12919] [PMID: 33540470]
[38]
Ferguson, K.M.; Berger, M.B.; Mendrola, J.M.; Cho, H.S.; Leahy, D.J.; Lemmon, M.A. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell, 2003, 11(2), 507-517.
[http://dx.doi.org/10.1016/S1097-2765(03)00047-9] [PMID: 12620237]
[39]
Hebert, T.L.; Wu, X.; Yu, G.; Goh, B.C.; Halvorsen, Y.D.C.; Wang, Z.; Moro, C.; Gimble, J.M. Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. J. Tissue Eng. Regen. Med., 2009, 3(7), 553-561.
[http://dx.doi.org/10.1002/term.198] [PMID: 19670348]
[40]
Häder, M.; Stach-Machado, D.; Pflüger, K.H.; Rotsch, M.; Heimann, B.; Moelling, K.; Havemann, K. Epidermal growth factor receptor expression, proliferation, and colony stimulating activity production in the urinary bladder carcinoma cell line 5637. J. Cancer Res. Clin. Oncol., 1987, 113(6), 579-585.
[http://dx.doi.org/10.1007/BF00390870] [PMID: 3316242]
[41]
Lee, J.B.; Shin, B.; Lee, S.H.; Lee, B.Y.; Kim, T.H.; Kim, M.G.; Yoo, S.D. Exposure assessment of epidermal growth factor to various tissues in mice after intravenous and subcutaneous administration. J. Pharm. Pharmacol., 2015, 67(11), 1519-1527.
[http://dx.doi.org/10.1111/jphp.12464] [PMID: 26255780]
[42]
Vladislav Victorovich, K.; Tatyana Aleksandrovna, K.; Victor Vitoldovich, P.; Aleksander Nicolaevich, S.; Larisa Valentinovna, K.; Anastasia Aleksandrovna, A. Spectra of tryptophan fluorescence are the result of co-existence of certain most abundant stabilized excited state and certain most abundant destabilized excited state. Spectrochim. Acta A. Mol. Biomol. Spectrosc., 2021, 257, 119784.
[http://dx.doi.org/10.1016/j.saa.2021.119784] [PMID: 33892250]
[43]
Zhao, J.; Klausen, C.; Qiu, X.; Cheng, J.C.; Chang, H.M.; Leung, P.C.K. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells. Oncotarget, 2016, 7(20), 28881-28890.
[http://dx.doi.org/10.18632/oncotarget.7591] [PMID: 27129169]
[44]
Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, Ł.; Lamperska, K. 2D and 3D cell cultures a comparison of different types of cancer cell cultures. Arch. Med. Sci., 2016, 14(4), 910-919.
[http://dx.doi.org/10.5114/aoms.2016.63743] [PMID: 30002710]
[45]
Grau, M.; Tebar, F.; Ramírez, I.; Soley, M. Epidermal growth factor administration decreases liver glycogen and causes mild hyperglycaemia in mice. Biochem. J., 1996, 315(1), 289-293.
[http://dx.doi.org/10.1042/bj3150289] [PMID: 8670120]
[46]
Subhan, F.; Yoon, T.D.; Choi, H.J.; Muhammad, I.; Lee, J.; Hong, C.; Oh, S.O.; Baek, S.Y.; Kim, B.S.; Yoon, S. Epidermal growth factor-like domain 8 inhibits the survival and proliferation of mouse thymocytes. Int. J. Mol. Med., 2013, 32(4), 952-958.
[http://dx.doi.org/10.3892/ijmm.2013.1448] [PMID: 23877103]
[47]
Beheshti, A.; Wage, J.; McDonald, J.T.; Lamont, C.; Peluso, M.; Hahnfeldt, P.; Hlatky, L. Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development. Oncotarget, 2015, 6(34), 35419-35432.
[http://dx.doi.org/10.18632/oncotarget.6214] [PMID: 26497558]
[48]
Jiang, W.; Li, Y.; Zhang, S.; Kong, G.; Li, Z. Association between cellular immune response and spleen weight in mice with hepatocellular carcinoma. Oncol. Lett., 2021, 22(2), 625.
[http://dx.doi.org/10.3892/ol.2021.12886] [PMID: 34267817]
[49]
Mishra, S.; Tamta, A.K.; Sarikhani, M.; Desingu, P.A.; Kizkekra, S.M.; Pandit, A.S.; Kumar, S.; Khan, D.; Raghavan, S.C.; Sundaresan, N.R. Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci. Rep., 2018, 8(1), 5599.
[http://dx.doi.org/10.1038/s41598-018-23669-9] [PMID: 29618792]
[50]
Sun, S.; Ji, H.; Feng, Y.; Kang, Y.; Yu, J.; Liu, A. A novel mechanism of tumor-induced thymic atrophy in mice bearing H22 hepatocellular carcinoma. Cancer Manag. Res., 2018, 10, 417-424.
[http://dx.doi.org/10.2147/CMAR.S157512] [PMID: 29551914]
[51]
Marquèze-Pouey, B.; Mailfert, S.; Rouger, V.; Goaillard, J.M.; Marguet, D. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations. PLoS One, 2014, 9(9), e106803.
[http://dx.doi.org/10.1371/journal.pone.0106803] [PMID: 25265278]
[52]
Pinilla-Macua, I.; Grassart, A.; Duvvuri, U.; Watkins, S.C.; Sorkin, A. EGF receptor signaling, phosphorylation, ubiquitylation and endocytosis in tumors in vivo. eLife, 2017, 6, e31993.
[http://dx.doi.org/10.7554/eLife.31993] [PMID: 29268862]
[53]
Bai, X.; Sun, P.; Wang, X.; Long, C.; Liao, S.; Dang, S.; Zhuang, S.; Du, Y.; Zhang, X.; Li, N.; He, K.; Zhang, Z. Structure and dynamics of the EGFR/HER2 heterodimer. Cell Discov., 2023, 9(1), 18.
[http://dx.doi.org/10.1038/s41421-023-00523-5] [PMID: 36781849]
[54]
Spassov, D.S.; Atanasova, M.; Doytchinova, I. A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors. Front. Mol. Biosci., 2023, 9(9), 1066029.
[http://dx.doi.org/10.3389/fmolb.2022.1066029] [PMID: 36703920]
[55]
Garvey, C.M.; Lau, R.; Sanchez, A.; Sun, R.X.; Fong, E.J.; Doche, M.E.; Chen, O.; Jusuf, A.; Lenz, H.J.; Larson, B.; Mumenthaler, S.M. Anti-EGFR Therapy induces egf secretion by cancer-associated fibroblasts to confer colorectal cancer chemoresistance. Cancers, 2020, 12(6), 1393.
[http://dx.doi.org/10.3390/cancers12061393] [PMID: 32481658]
[56]
Iyer, R.S.; Needham, S.R.; Galdadas, I.; Davis, B.M.; Roberts, S.K.; Man, R.C.H.; Zanetti-Domingues, L.C.; Clarke, D.T.; Fruhwirth, G.O.; Parker, P.J.; Rolfe, D.J.; Gervasio, F.L.; Martin-Fernandez, M.L. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers. Nat. Commun., 2024, 15(1), 2130.
[http://dx.doi.org/10.1038/s41467-024-46284-x] [PMID: 38503739]
[57]
Nair, S.; Trummell, H.Q.; Rajbhandari, R.; Thudi, N.K.; Nozell, S.E.; Warram, J.M.; Willey, C.D.; Yang, E.S.; Placzek, W.J.; Bonner, J.A.; Bredel, M. Novel EGFR ectodomain mutations associated with ligand-independent activation and cetuximab resistance in head and neck cancer. PLoS One, 2020, 15(2), e0229077.
[http://dx.doi.org/10.1371/journal.pone.0229077] [PMID: 32069320]

© 2025 Bentham Science Publishers | Privacy Policy