Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Role of Natural Products against the Spread of SARS-CoV-2 by Inhibition of ACE-2 Receptor: A Review

In Press, (this is not the final "Version of Record"). Available online 22 July, 2024
Author(s): Krishana Kumar Sharma, Shoma Devi, Dharmendra Kumar, Zeeshan Ali, Nishat Fatma, Raghvendra Misra and Gajendra Kumar*
Published on: 22 July, 2024

DOI: 10.2174/0113816128320161240703092622

Price: $95

Abstract

A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (Curcuma longa, green tea, andPiper nigrum) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (ππ) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor-binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.

[1]
Cyranoski D. Profile of a scientists are quickly piecing together how the new coronavirus operates, where it came from and what it might do next-but pressing questions remain. Nature 2020; 581: 22-6.
[http://dx.doi.org/10.1038/d41586-020-01315-7] [PMID: 32367025]
[2]
Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020; 14(1): 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[3]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[4]
World Health Organization. Coronavirus disease (COVID-19) epidemiological updates and monthly operational updates. Available from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
[5]
Pengfei S, Xiaosheng L, Chao X, Wenjuan SBP. Understanding of COVID-19 based on current evidence. Jou Med Virol 2020; 92(6): 548-51.
[http://dx.doi.org/10.1002/jmv.25722]
[6]
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011; 85(2): 873-82.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[7]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[8]
Wang JJ, Edin ML, Zeldin DC, Li C, Wang DW, Chen C. Good or bad: Application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities. Pharmacol Ther 2020; 215: 107628.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107628] [PMID: 32653530]
[9]
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: Are they closely related? Clin Microbiol Infect 2020; 26(6): 729-34.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[10]
Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[11]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[12]
Al-Tawfiq JA, Hinedi K, Ghandour J, et al. Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients. Clin Infect Dis 2014; 59(2): 160-5.
[http://dx.doi.org/10.1093/cid/ciu226] [PMID: 24723278]
[13]
Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 2014; 160(6): 389-397.
[http://dx.doi.org/10.7326/M13-2486] [PMID: 24474051]
[14]
Chafekar A, Fielding B. MERS-CoV: Understanding the latest human coronavirus threat. Viruses 2018; 10(2): 93.
[http://dx.doi.org/10.3390/v10020093] [PMID: 29495250]
[15]
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415-24.
[http://dx.doi.org/10.1084/jem.20050828] [PMID: 16043521]
[16]
Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res 2020; 126(12): 1671-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317134] [PMID: 32302265]
[17]
Barbosa-Filho JM, Martins VKM, Rabelo LA, et al. Natural products inhibitors of the angiotensin converting enzyme (ACE): A review between 1980-2000. Rev Bras Farmacogn 2006; 16(3): 421-46.
[http://dx.doi.org/10.1590/S0102-695X2006000300021]
[18]
Patten GS, Abeywardena MY, Bennett LE. Inhibition of angiotensin converting enzyme, angiotensin II receptor blocking, and blood pressure lowering bioactivity across plant families. Crit Rev Food Sci Nutr 2016; 56(2): 181-214.
[http://dx.doi.org/10.1080/10408398.2011.651176] [PMID: 24915402]
[19]
Joshi T, Joshi T, Sharma P, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci 2020; 24(8): 4529-36.
[PMID: 32373991]
[20]
da Antonio A. S, Wiedemann MLS, Veiga-Junior, VF. Natural products’ role against COVID-19. RSC Advance 2020; 10: 23379-93.
[21]
Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 2004; 383(1): 45-51.
[http://dx.doi.org/10.1042/BJ20040634] [PMID: 15283675]
[22]
Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017; 9(4): 316.
[http://dx.doi.org/10.3390/nu9040316] [PMID: 28333109]
[23]
Pandit M, Latha N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. 2020.
[http://dx.doi.org/10.21203/rs.3.rs-22687/v1]
[24]
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: Promising natural compounds against viral infections. Arch Virol 2017; 162(9): 2539-51.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[25]
Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes (Basel) 2020; 8(5): 549.
[http://dx.doi.org/10.3390/pr8050549]
[26]
Chen CN, Lin CPC, Huang KK, et al. Inhibition of SARS-CoV 3C-like protease activity by Theaflavin-3,3′-digallate (TF3). Evid Based Complement Alternat Med 2005; 2(2): 209-15.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[27]
Chenh J, Tang Y, Bao B, Zhang P. Exploring the active compounds of traditional Mongolian medicine agsirga in intervention of novel coronavirus ChemRxiv 2019; 11955273.
[http://dx.doi.org/10.26434/chemrxiv.11955273.v2]
[28]
Joshi R, Jagdale S, Bansode S, et al. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Biomol, J Struct Dyn 2020; 39(9): 3099-119.
[http://dx.doi.org/10.1080/07391102.2020.1760137]
[29]
Alisha K, Tripti S. Computational screening of phytochemicals from medicinal plants as COVID-19 inhibitors. ChemRxiv 2020; 12320273.
[http://dx.doi.org/10.26434/chemrxiv.12320273.v1]
[30]
Oo A, Teoh BT, Sam SS, Bakar SA, Zandi K. Baicalein and baicalin as Zika virus inhibitors. Arch Virol 2019; 164(2): 585-93.
[http://dx.doi.org/10.1007/s00705-018-4083-4] [PMID: 30392049]
[31]
Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules 2020; 25(10): 2271.
[http://dx.doi.org/10.3390/molecules25102271] [PMID: 32408547]
[32]
Alok A, Indra DS, Shivani S, Mallika K, Prakash CJ. Curcumin - pharmacological actions and its role in oral submucous fibrosis: A review. J Clin Diagn Res 2015; 9(10): ZE01.
[http://dx.doi.org/10.7860/JCDR/2015/13857.6552]
[33]
Yadav SK, Khar RK, Mujeeb M, Akhtar M, Yadav D. Turmeric (Curcuma longa L.): A promising spice for phytochemical and pharmacological activities. Int J Green Pharm 2013; 7(2): 85.
[http://dx.doi.org/10.4103/0973-8258.116375]
[34]
Priya NC, Kumar PS. Antiviral activities and cytotoxicaty assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int J Pharm Sci Rev Res 2017; 44: 197-202.
[35]
Bukhari IA, Pivac N, Alhumayyd MS, Mahesar AL, Gilani AH. The analgesic and anticonvulsant effects of piperine in mice. J Physiol Pharmacol 2013; 64(6): 789-94.
[PMID: 24388894]
[36]
Joshi DR, Shrestha AC, Adhikari N. A review on diversified use of the king of spices: Piper nigrum (black paper). Int J Pharm Sci Res 2018; 9(10): 4089-101.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.9(10).4089-01]
[37]
Bashir T. Chemistry, pharmacology and ethnomedicinal uses of Helianthus annuus (sunflower): A review. Pure Appl Biol 2015; 4(2): 226-35.
[http://dx.doi.org/10.19045/bspab.2015.42011]
[38]
Pal D. Sunflower (Helianthus annuus L.) seeds in health and nutrition. Nuts Seeds Health Dis Preven 2011; 2011: 1097-105.
[http://dx.doi.org/10.1016/B978-0-12-375688-6.10130-6]
[39]
Long YQ, Lee SL, Lin CY, et al. Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Bioorg Med Chem Lett 2001; 11(18): 2515-9.
[http://dx.doi.org/10.1016/S0960-894X(01)00493-0] [PMID: 11549459]
[40]
Jena AB, Kanungo N, Nayak V, Chainy GBN. Catechin, and curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane: Insights from computational study and implication for intervention. Sci Rep 2021; 11(1): 2043.
[http://dx.doi.org/10.21203/rs.3.rs-22057/v1]
[41]
Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 2020; 6(3): 315-31.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[42]
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[43]
Shim JS, Kim JH, Cho HY, et al. Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol 2003; 10(8): 695-704.
[http://dx.doi.org/10.1016/S1074-5521(03)00169-8] [PMID: 12954328]
[44]
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD, Amjad D. SARS-CoV-2 and coronavirus disease 2019: What We know so far. Pathogens 2020; 9(3): 231.
[http://dx.doi.org/10.3390/pathogens9030231]
[45]
Reguera J, Santiago C, Mudgal G, Ordoño D, Enjuanes L, Casasnovas JM. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 2012; 8(8): e1002859.
[http://dx.doi.org/10.1371/journal.ppat.1002859] [PMID: 22876187]
[46]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[47]
Šedo A, Vlašicová K, Barták P, et al. Quaternary benzo[c]phenanthridine alkaloids as inhibitors of aminopeptidase N and dipeptidyl peptidase IV. Phytother Res 2002; 16(1): 84-7.
[http://dx.doi.org/10.1002/ptr.969] [PMID: 11807974]
[48]
Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001; 279(2): 371-4.
[http://dx.doi.org/10.1006/viro.2000.0757] [PMID: 11162792]
[49]
Wang L, Shi W, Joyce MG, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 2015; 6(1): 7712.
[http://dx.doi.org/10.1038/ncomms8712] [PMID: 26218507]
[50]
Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol 2018; 14(5): 325-36.
[http://dx.doi.org/10.1038/nrneph.2018.15] [PMID: 29578208]
[51]
Tan ELC, Ooi EE, Lin CY, et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis 2004; 10(4): 581-6.
[http://dx.doi.org/10.3201/eid1004.030458] [PMID: 15200845]
[52]
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998; 64(4): 353-6.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[53]
Kumar G, Kumar D, Singh NP, Therapeutic approach against 2019-nCoV by inhibition of ACE-2 receptor. Drug Res 2021; 71: 213-17.
[http://dx.doi.org/10.1055/a-1275-0228] [PMID: 33184809]
[54]
Song JM. Anti-infective potential of catechins and their derivatives against viral hepatitis. Clin Exp Vaccine Res 2018; 7(1): 37-42.
[http://dx.doi.org/10.7774/cevr.2018.7.1.37] [PMID: 29399578]
[55]
Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 2007; 3(6): 635-7.
[http://dx.doi.org/10.4161/auto.4916] [PMID: 17786026]
[56]
Patil VM, Das S, Balasubramanian K. Quantum chemical and docking insights into bioavailability enhancement of curcumin by piperine in pepper. J Phys Chem A 2016; 120(20): 3643-53.
[http://dx.doi.org/10.1021/acs.jpca.6b01434] [PMID: 27111639]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy