Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

A Functional Human Glycogen Debranching Enzyme Encoded by a Synthetic Gene: Its Implications for Glycogen Storage Disease Type III Management

In Press, (this is not the final "Version of Record"). Available online 15 July, 2024
Author(s): Doriana Triggiani*, Olivia C. Demurtas, Elena Illiano, Silvia Massa, Alessandra Pasquo, Carlo Dionisi-Vici, Carmela Marino, Giovanni Giuliano and Rosella Franconi
Published on: 15 July, 2024

DOI: 10.2174/0109298665307430240628063339

Abstract

Background: Glycogen Storage Disease type III (GSD III) is a metabolic disorder resulting from a deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (approximately 170 kDa) with cytoplasmic localization and two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Mutations in the Agl gene, with consequent deficiency in GDE, lead to the accumulation of abnormal/toxic glycogen with shorter chains (phosphorylase limit dextrin, PLD) in skeletal and/or heart muscle and/or in the liver. Currently, there is no targeted therapy, and available treatments are symptomatic, relying on specific diets.

Methods: Enzyme Replacement Therapy (ERT) might represent a potential therapeutic strategy for GSD III. Moreover, the single-gene nature of GSD III, the subcellular localization of GDE, and the type of affected tissues represent ideal conditions for exploring gene therapy approaches. Toward this direction, we designed a synthetic, codon-optimized cDNA encoding the human GDE.

Results: This gene yielded high amounts of soluble, enzymatically active protein in Escherichia coli. Moreover, when transfected in Human Embryonic Kidney cells (HEK-293), it successfully encoded a functional GDE.

Conclusion: These results suggest that our gene or protein might complement the missing function in GSD III patients, opening the door to further exploration of therapeutic approaches for this disease.

[1]
Chen, M.A.; Weinstein, D.A. Glycogen storage diseases: Diagnosis, treatment and outcome. Transl. Sci. Rare Dis., 2016, 1(1), 45-72.
[http://dx.doi.org/10.3233/TRD-160006]
[2]
Kanungo, S.; Wells, K.; Tribett, T.; El-Gharbawy, A. Glycogen metabolism and glycogen storage disorders. Ann. Transl. Med., 2018, 6(24), 474.
[http://dx.doi.org/10.21037/atm.2018.10.59] [PMID: 30740405]
[3]
Stone, W.L.; Basit, H.; Adil, A. Glycogen Storage Disease.StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[4]
Roach, P.J.; Depaoli-Roach, A.A.; Hurley, T.D.; Tagliabracci, V.S. Glycogen and its metabolism: Some new developments and old themes. Biochem. J., 2012, 441(3), 763-787.
[http://dx.doi.org/10.1042/BJ20111416] [PMID: 22248338]
[5]
Szymańska, E.; Jóźwiak-Dzięcielewska, D.A.; Gronek, J.; Niewczas, M.; Czarny, W.; Rokicki, D.; Gronek, P. Hepatic glycogen storage diseases: Pathogenesis, clinical symptoms and therapeutic management. Arch. Med. Sci., 2021, 17(2), 304-313.
[http://dx.doi.org/10.5114/aoms.2019.83063] [PMID: 33747265]
[6]
Schreuder, A.B.; Rossi, A.; Grünert, S.C.; Derks, T.G.J. Glycogen Storage Disease Type III.GeneReviews; Adam, M.P.; Mirzaa, G.M.; Pagon, R.A., Eds.; University of Washington: Seattle, 2010.
[7]
Kishnani, P.S.; Austin, S.L.; Arn, P.; Bali, D.S.; Boney, A.; Case, L.E.; Chung, W.K.; Desai, D.M.; El-Gharbawy, A.; Haller, R.; Smit, G.P.A.; Smith, A.D.; Hobson-Webb, L.D.; Wechsler, S.B.; Weinstein, D.A.; Watson, M.S. Glycogen Storage Disease Type III diagnosis and management guidelines. Genet. Med., 2010, 12(7), 446-463.
[http://dx.doi.org/10.1097/GIM.0b013e3181e655b6] [PMID: 20631546]
[8]
Sentner, C.P.; Hoogeveen, I.J.; Weinstein, D.A.; Santer, R.; Murphy, E.; McKiernan, P.J.; Steuerwald, U.; Beauchamp, N.J.; Taybert, J.; Laforêt, P.; Petit, F.M.; Hubert, A.; Labrune, P.; Smit, G.P.A.; Derks, T.G.J. Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J. Inherit. Metab. Dis., 2016, 39(5), 697-704.
[http://dx.doi.org/10.1007/s10545-016-9932-2] [PMID: 27106217]
[9]
Taylor, C.; Cox, A.J.; Kernohan, J.C.; Cohen, P. Debranching enzyme from rabbit skeletal muscle. Purification, properties and physiological role. Eur. J. Biochem., 1975, 51(1), 105-115.
[http://dx.doi.org/10.1111/j.1432-1033.1975.tb03911.x] [PMID: 1122910]
[10]
Zhai, L.; Feng, L.; Xia, L.; Yin, H.; Xiang, S. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat. Commun., 2016, 7(1), 11229.
[http://dx.doi.org/10.1038/ncomms11229] [PMID: 27088557]
[11]
Bates, E.J.; Heaton, G.M.; Taylor, C.; Kernohan, J.C.; Cohen, P. Debranching enzyme from rabbit skeletal muscle; Evidence for the location of two active centres on a single polypeptide chain. FEBS Lett., 1975, 58(1-2), 181-185.
[http://dx.doi.org/10.1016/0014-5793(75)80254-7] [PMID: 1063726]
[12]
Zmasek, C.M.; Godzik, A. Phylogenomic analysis of glycogen branching and debranching enzymatic duo. BMC Evol. Biol., 2014, 14(1), 183.
[http://dx.doi.org/10.1186/s12862-014-0183-2] [PMID: 25148856]
[13]
Nguyen, D.H.D.; Park, J.T.; Shim, J.H.; Tran, P.L.; Oktavina, E.F.; Nguyen, T.L.H.; Lee, S.J.; Park, C.S.; Li, D.; Park, S.H.; Stapleton, D.; Lee, J.S.; Park, K.H. Reaction kinetics of substrate transglycosylation catalyzed by TreX of Sulfolobus solfataricus and effects on glycogen breakdown. J. Bacteriol., 2014, 196(11), 1941-1949.
[http://dx.doi.org/10.1128/JB.01442-13] [PMID: 24610710]
[14]
Yang-Feng, T.L.; Zheng, K.; Yu, J.; Yang, B.Z.; Chen, Y.T.; Kao, F.T. Assignment of the human glycogen debrancher gene to chromosome 1p21. Genomics, 1992, 13(4), 931-934.
[http://dx.doi.org/10.1016/0888-7543(92)90003-B] [PMID: 1505983]
[15]
Bao, Y.; Dawson, T.L., Jr; Chen, Y.T. Human glycogen debranching enzyme gene (AGL): complete structural organization and characterization of the 5′ flanking region. Genomics, 1996, 38(2), 155-165.
[http://dx.doi.org/10.1006/geno.1996.0611] [PMID: 8954797]
[16]
Bao, Y.; Yang, B.Z.; Dawson, T.L., Jr; Chen, Y.T. Isolation and nucleotide sequence of human liver glycogen debranching enzyme mRNA: Identification of multiple tissue-specific isoforms. Gene, 1997, 197(1-2), 389-398.
[http://dx.doi.org/10.1016/S0378-1119(97)00291-6] [PMID: 9332391]
[17]
Lucchiari, S.; Santoro, D.; Pagliarani, S.; Comi, G.P. Clinical, biochemical and genetic features of glycogen debranching enzyme deficiency. Acta Myol., 2007, 26(1), 72-74.
[PMID: 17915576]
[18]
Goldstein, J.L.; Austin, S.L.; Boyette, K.; Kanaly, A.; Veerapandiyan, A.; Rehder, C.; Kishnani, P.S.; Bali, D.S. Molecular analysis of the AGL gene: Identification of 25 novel mutations and evidence of genetic heterogeneity in patients with Glycogen Storage Disease Type III. Genet. Med., 2010, 12(7), 424-430.
[http://dx.doi.org/10.1097/GIM.0b013e3181d94eaa] [PMID: 20648714]
[19]
Endo, Y.; Horinishi, A.; Vorgerd, M.; Aoyama, Y.; Ebara, T.; Murase, T.; Odawara, M.; Podskarbi, T.; Shin, Y.S.; Okubo, M. Molecular analysis of the AGL gene: heterogeneity of mutations in patients with glycogen storage disease type III from Germany, Canada, Afghanistan, Iran, and Turkey. J. Hum. Genet., 2006, 51(11), 958-963.
[http://dx.doi.org/10.1007/s10038-006-0045-x] [PMID: 17047887]
[20]
Berling, É.; Laforêt, P.; Wahbi, K.; Labrune, P.; Petit, F.; Ronzitti, G.; O’Brien, A. Narrative review of glycogen storage disorder type III with a focus on neuromuscular, cardiac and therapeutic aspects. J. Inherit. Metab. Dis., 2021, 44(3), 521-533.
[http://dx.doi.org/10.1002/jimd.12355] [PMID: 33368379]
[22]
Mayorandan, S.; Meyer, U.; Hartmann, H.; Das, A.M. Glycogen storage disease type III: Modified Atkins diet improves myopathy. Orphanet J. Rare Dis., 2014, 9(1), 196.
[http://dx.doi.org/10.1186/s13023-014-0196-3] [PMID: 25431232]
[23]
Pagliarani, S.; Lucchiari, S.; Ulzi, G.; Ripolone, M.; Violano, R.; Fortunato, F.; Bordoni, A.; Corti, S.; Moggio, M.; Bresolin, N.; Comi, G.P. Glucose-free/high-protein diet improves hepatomegaly and exercise intolerance in glycogen storage disease type III mice. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(10), 3407-3417.
[http://dx.doi.org/10.1016/j.bbadis.2018.07.031] [PMID: 30076962]
[24]
Ross, K.M.; Ferrecchia, I.A.; Dahlberg, K.R.; Dambska, M.; Ryan, P.T.; Weinstein, D.A. Dietary management of the glycogen storage diseases: Evolution of treatment and ongoing controversies. Adv. Nutr., 2020, 11(2), 439-446.
[http://dx.doi.org/10.1093/advances/nmz092] [PMID: 31665208]
[25]
Vidal, P.; Pagliarani, S.; Colella, P.; Costa Verdera, H.; Jauze, L.; Gjorgjieva, M.; Puzzo, F.; Marmier, S.; Collaud, F.; Simon Sola, M.; Charles, S.; Lucchiari, S.; van Wittenberghe, L.; Vignaud, A.; Gjata, B.; Richard, I.; Laforet, P.; Malfatti, E.; Mithieux, G.; Rajas, F.; Comi, G.P.; Ronzitti, G.; Mingozzi, F. Rescue of GSDIII phenotype with gene transfer requires liver- and muscle-targeted GDE expression. Mol. Ther., 2018, 26(3), 890-901.
[http://dx.doi.org/10.1016/j.ymthe.2017.12.019] [PMID: 29396266]
[26]
Lim, J.A.; Choi, S.J.; Gao, F.; Kishnani, P.S.; Sun, B. A novel gene therapy approach for GSD III using an aav vector encoding a bacterial glycogen debranching enzyme. Mol. Ther. Methods Clin. Dev., 2020, 18, 240-249.
[http://dx.doi.org/10.1016/j.omtm.2020.05.034] [PMID: 32637453]
[27]
Demurtas, O.C.; Massa, S.; Illiano, E.; De Martinis, D.; Chan, P.K.S.; Di Bonito, P.; Franconi, R. Antigen production in plant to tackle infectious diseases flare up: The case of SARS. Front. Plant Sci., 2016, 7, 54.
[http://dx.doi.org/10.3389/fpls.2016.00054] [PMID: 26904039]
[28]
Hers, H.G.; Verhue, W.; Hoof, F. The determination of amylo-1,6-glucosidase. Eur. J. Biochem., 1967, 2(3), 257-264.
[http://dx.doi.org/10.1111/j.1432-1033.1967.tb00133.x] [PMID: 6078537]
[29]
Rodriguez-Hernandez, M.; Triggiani, D.; Ivison, F.; Demurtas, O.C.; Illiano, E.; Marino, C.; Franconi, R.; Massa, S. Expression of a functional recombinant human glycogen debranching enzyme (hgde) in N. benthamiana plants and in hairy root cultures. Protein Pept. Lett., 2020, 27(2), 145-157.
[http://dx.doi.org/10.2174/0929866526666191014154047] [PMID: 31622193]
[30]
Demurtas, O.C.; Massa, S.; Ferrante, P.; Venuti, A.; Franconi, R.; Giuliano, G. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One, 2013, 8(4), e61473.
[http://dx.doi.org/10.1371/journal.pone.0061473] [PMID: 23626690]
[31]
Kikuchi, T.; Yang, H.W.; Pennybacker, M.; Ichihara, N.; Mizutani, M.; Van Hove, J.L.; Chen, Y.T. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail. J. Clin. Invest., 1998, 101(4), 827-833.
[http://dx.doi.org/10.1172/JCI1722] [PMID: 9466978]
[32]
Concolino, D.; Deodato, F.; Parini, R. Enzyme replacement therapy: efficacy and limitations. Ital. J. Pediatr., 2018, 44(S2)(Suppl. 2), 117-126.
[http://dx.doi.org/10.1186/s13052-018-0562-1] [PMID: 30442189]
[33]
Van den Hout, J.M.P.; Kamphoven, J.H.J.; Winkel, L.P.F.; Arts, W.F.M.; Klerk, J.B.C.D.; Loonen, M.C.B.; Vulto, A.G.; Cromme-Dijkhuis, A.; Weisglas-Kuperus, N.; Hop, W.; Hirtum, H.V.; Diggelen, O.P.V.; Boer, M.; Kroos, M.A.; Doorn, P.A.V.; Voort, E.V.; Sibbles, B.; Corven, E.J.J.M.V.; Brakenhoff, J.P.J.; Hove, J.V.; Smeitink, J.A.M.; Jong, G.; Reuser, A.J.J.; Ploeg, A.T.V. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics, 2004, 113(5), e448-e457.
[http://dx.doi.org/10.1542/peds.113.5.e448] [PMID: 15121988]
[34]
Kishnani, P.S.; Corzo, D.; Nicolino, M.; Byrne, B.; Mandel, H.; Hwu, W.L.; Leslie, N.; Levine, J.; Spencer, C.; McDonald, M.; Li, J.; Dumontier, J.; Halberthal, M.; Chien, Y.H.; Hopkin, R.; Vijayaraghavan, S.; Gruskin, D.; Bartholomew, D.; van der Ploeg, A.; Clancy, J.P.; Parini, R.; Morin, G.; Beck, M.; De la Gastine, G.S.; Jokic, M.; Thurberg, B.; Richards, S.; Bali, D.; Davison, M.; Worden, M.A.; Chen, Y.T.; Wraith, J.E. Recombinant human acid α-glucosidase. Neurology, 2007, 68(2), 99-109.
[http://dx.doi.org/10.1212/01.wnl.0000251268.41188.04] [PMID: 17151339]
[35]
Zhu, Y.; Jiang, J.L.; Gumlaw, N.K.; Zhang, J.; Bercury, S.D.; Ziegler, R.J.; Lee, K.; Kudo, M.; Canfield, W.M.; Edmunds, T.; Jiang, C.; Mattaliano, R.J.; Cheng, S.H. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol. Ther., 2009, 17(6), 954-963.
[http://dx.doi.org/10.1038/mt.2009.37] [PMID: 19277015]
[36]
Baneyx, F.; Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol., 2004, 22(11), 1399-1408.
[http://dx.doi.org/10.1038/nbt1029] [PMID: 15529165]
[37]
Alexaki, A.; Hettiarachchi, G.K.; Athey, J.C.; Katneni, U.K.; Simhadri, V.; Hamasaki-Katagiri, N.; Nanavaty, P.; Lin, B.; Takeda, K.; Freedberg, D.; Monroe, D.; McGill, J.R.; Peters, R.; Kames, J.M.; Holcomb, D.D.; Hunt, R.C.; Sauna, Z.E.; Gelinas, A.; Janjic, N.; DiCuccio, M.; Bar, H.; Komar, A.A.; Kimchi-Sarfaty, C. Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and gene therapies. Sci. Rep., 2019, 9(1), 15449.
[http://dx.doi.org/10.1038/s41598-019-51984-2] [PMID: 31664102]
[38]
Kudla, G.; Lipinski, L.; Caffin, F.; Helwak, A.; Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol., 2006, 4(6), e180.
[http://dx.doi.org/10.1371/journal.pbio.0040180] [PMID: 16700628]

© 2025 Bentham Science Publishers | Privacy Policy