Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Design and Development of Ophthalmic Liposomes from the QbD Perspective

Author(s): Kaustubh Pawar* and Karimunnisa Shaikh*

Volume 30, Issue 30, 2024

Published on: 15 July, 2024

Page: [2364 - 2377] Pages: 14

DOI: 10.2174/0113816128302570240627113909

Price: $65

Abstract

Due to significant lachrymation, drug washing out, and poor adhesion to the lipophilic outer layer of the precorneal and cornea membrane, topical ophthalmic solution drops have poor ocular bioavailability. The rate of transcorneal absorption is impacted in the case of hydrophilic drug molecules as brimonidine tartrate, timolol maleate, cyclosporine, etc. Ophthalmic solution administered in many doses is less patient-compliant. The limitation of multiple-dose and its negative effects can be overcome by the development of delayed- release liposomes. Liposomes are regulatory-approved novel drug delivery systems. Its vesicular form aids in delaying medication release, and its lipidic makeup enables it to stick to the cornea's lipophilic layer. As a result, it will prevent precorneal clearing, extend corneal contact time, and provide sufficient transcorneal absorption. The aim of this review article is to portray the benefits of liposomes for ophthalmic drug delivery and its formulation development in the light of QbD. The review discusses the composition, preparatory methods and quality aspects of ophthalmic liposomes. It then accordingly reasonably proposes the quality target product profile, critical quality attributes, critical material attributes and critical process parameters, involved in liposome development for ophthalmic drug delivery. This review shall help formulation scientists to formulate ophthalmic liposomes of desirable quality.

[1]
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv 2021; 18(7): 819-47.
[http://dx.doi.org/10.1080/17425247.2021.1872542] [PMID: 33412914]
[2]
Shen J, Lu GW, Hughes P. Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharm Res 2018; 35(11): 217.
[http://dx.doi.org/10.1007/s11095-018-2498-y] [PMID: 30255364]
[3]
Pahuja P, Arora S, Pawar P. Ocular drug delivery system: A reference to natural polymers. Expert Opin Drug Deliv 2012; 9(7): 837-61.
[http://dx.doi.org/10.1517/17425247.2012.690733] [PMID: 22703523]
[4]
Bravo-Osuna I, Andrés-Guerrero V, Pastoriza Abal P, Molina- Martínez IT, Herrero-Vanrell R. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2016; 6(6): 686-707.
[http://dx.doi.org/10.1007/s13346-016-0336-5] [PMID: 27766598]
[5]
Moisseiev E, Loewenstein A. Drug delivery to the posterior segment of the eye. Dev Ophthalmol 2017; 58: 87-101.
[http://dx.doi.org/10.1159/000455276] [PMID: 28351054]
[6]
Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: Emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006; 58(11): 1136-63.
[http://dx.doi.org/10.1016/j.addr.2006.07.024] [PMID: 17081648]
[7]
Park DJJ. Topographic anatomy of the eye, Duane’s foundations of clinical ophthalmology. Lippincott Williams & Wilkins 2006.
[8]
Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: Ppresent innovations and future challenges. J Pharmacol Exp Ther 2019; 370(3): 602-24.
[http://dx.doi.org/10.1124/jpet.119.256933] [PMID: 31072813]
[9]
Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol 2000; 27(7): 558-62.
[http://dx.doi.org/10.1046/j.1440-1681.2000.03288.x] [PMID: 10874518]
[10]
Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubernet C. Cationic vectors in ocular drug delivery. J Drug Target 2004; 12(9-10): 623-33.
[http://dx.doi.org/10.1080/10611860400015910] [PMID: 15621688]
[11]
Gaudana R, Ananthula HK, Parenky A. Ocular drug delivery. Aaps J 2010; 12(3): 348-60.
[http://dx.doi.org/10.1208/s12248-010-9183-3]
[12]
Bennett L. Drug delivery to specific compartments of the eye. Ocular Drug Delivery: Advances, Challenges and Applications. Springer International Publishing 2016; pp. 37-52.
[13]
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[14]
Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: Addressing the challenge of preclinical to clinical translation. Pharm Res 2018; 35(12): 245.
[http://dx.doi.org/10.1007/s11095-018-2519-x] [PMID: 30374744]
[15]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(4): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[16]
Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur J Ophthalmol 2019; 29(1): 113-26.
[http://dx.doi.org/10.1177/1120672118769776] [PMID: 29756507]
[17]
Liposome Drug Products. 2018. Guidance for Industry. US-FDA CDER. Liposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation | FDA. 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/liposome-drug-products-chemistry-manufacturing-and-controls-human-pharmacokinetics-and
[18]
Torchilin V. Liposomes: A Practical Approach. Kettering, UK: Oxford University Press 2003; pp. 77-101.
[http://dx.doi.org/10.1093/oso/9780199636556.001.0001]
[19]
Agarwal R, Iezhitsa I, Agarwal P, et al. Liposomes in topical ophthalmic drug delivery: An update. Drug Deliv 2016; 23(4): 1075-91.
[http://dx.doi.org/10.3109/10717544.2014.943336] [PMID: 25116511]
[20]
Cheng T, Li J, Cheng Y, Zhang X, Qu Y. Triamcinolone acetonide-chitosan coated liposomes efficiently treated retinal edema as eye drops. Exp Eye Res 2019; 188: 107805.
[http://dx.doi.org/10.1016/j.exer.2019.107805] [PMID: 31526807]
[21]
Li J, Cheng T, Tian Q, et al. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Deliv 2019; 26(1): 188-98.
[http://dx.doi.org/10.1080/10717544.2019.1571122] [PMID: 30835587]
[22]
Tan G, Yu S, Pan H, et al. Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol 2017; 94(Pt A): 355-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.035] [PMID: 27760378]
[23]
Fan M, Xu S, Xia S, Zhang X. Effect of different preparation methods on physicochemical properties of salidroside liposomes. J Agric Food Chem 2007; 55(8): 3089-95.
[http://dx.doi.org/10.1021/jf062935q] [PMID: 17373810]
[24]
Strauss G, Ingenito EP. Stabilization of liposome bilayers to freezing and thawing: Effects of cryoprotective agents and membrane proteins. Cryobiology 1980; 17(5): 508-15.
[http://dx.doi.org/10.1016/0011-2240(80)90062-0] [PMID: 7438768]
[25]
Gouveia SM, Tiffany JM. Human tear viscosity: An interactive role for proteins and lipids. Biochim Biophys Acta Proteins Proteomics 2005; 1753(2): 155-63.
[http://dx.doi.org/10.1016/j.bbapap.2005.08.023] [PMID: 16236563]
[26]
Soriano-Romaní L, Vicario-de-la-Torre M, Crespo-Moral M, et al. Novel anti-inflammatory liposomal formulation for the pre-ocular tear film: In vitro and ex vivo functionality studies in corneal epithelial cells. Exp Eye Res 2017; 154: 79-87.
[http://dx.doi.org/10.1016/j.exer.2016.11.010] [PMID: 27840060]
[27]
Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int J Nanomed 2012; 7: 123-31.
[PMID: 22275828]
[28]
Rathod S, Deshpande SG. Design and evaluation of liposomal formulation of pilocarpine nitrate. Indian J Pharm Sci 2010; 72(2): 155-60.
[http://dx.doi.org/10.4103/0250-474X.65014] [PMID: 20838517]
[29]
Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery. J Control Release 2000; 63(1-2): 135-40.
[http://dx.doi.org/10.1016/S0168-3659(99)00192-3] [PMID: 10640587]
[30]
Schaeffer HE, Krohn DL. Liposomes in topical drug delivery. Investig Ophthalmol. Vis Sci 1982; 22: 220-7.
[31]
Taniguchi K, Yamamoto Y, Itakura K, Miichi H, Hayashi S. Assessment of ocular irritability of liposome preparations. J Pharmacobiodyn 1988; 11(9): 607-11.
[http://dx.doi.org/10.1248/bpb1978.11.607] [PMID: 3216282]
[32]
Klymchenko AS, Oncul S, Didier P, et al. Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochim Biophys Acta Biomembr 2009; 1788(2): 495-9.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.019] [PMID: 19027712]
[33]
Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 2011; 2011: 1-14.
[http://dx.doi.org/10.1155/2011/863734] [PMID: 21490757]
[34]
Bibi S, Kaur R, Henriksen-Lacey M, et al. Microscopy imaging of liposomes: From coverslips to environmental SEM. Int J Pharm 2011; 417(1-2): 138-50.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.021] [PMID: 21182914]
[35]
Robson AL, Dastoor PC, Flynn J, et al. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front Pharmacol 2018; 9: 80.
[http://dx.doi.org/10.3389/fphar.2018.00080] [PMID: 29467660]
[36]
Mehanna MM, El-Kader NA, Samaha MW. Liposomes as potential carriers for ketorolac ophthalmic delivery: Formulation and stability issues. Braz J Pharm Sci 2017; 53(2): 1-10.
[http://dx.doi.org/10.1590/s2175-97902017000216127]
[37]
Lin J, Wu H, Wang Y, Lin J, Chen Q, Zhu X. Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes. Drug Deliv 2016; 23(4): 1144-51.
[http://dx.doi.org/10.3109/10717544.2014.991952] [PMID: 25533876]
[38]
Taha EI, El-Anazi MH, El-Bagory IM, Bayomi MA. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 2014; 22(3): 231-9.
[http://dx.doi.org/10.1016/j.jsps.2013.07.003] [PMID: 25061409]
[39]
Chetoni P, Monti D, Tampucci S, et al. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm 2015; 492(1-2): 120-6.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.055] [PMID: 26183332]
[40]
Soriano-Romaní L, Álvarez-Trabado J, López-García A, Molina- Martínez I, Herrero-Vanrell R, Diebold Y. Improved in vitro corneal delivery of a thrombospondin-1-derived peptide using a liposomal formulation. Exp Eye Res 2018; 167: 118-21.
[http://dx.doi.org/10.1016/j.exer.2017.12.002] [PMID: 29246497]
[41]
Dai Y, Zhou R, Liu L, Lu Y, Qi J, Wu W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): In vitro characterization and improved corneal permeation. Int J Nanomed 2013; 8: 1921-33.
[PMID: 23690687]
[42]
de Sá FAP, Taveira SF, Gelfuso GM, Lima EM, Gratieri T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B Biointerfaces 2015; 133: 331-8.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.036] [PMID: 26123854]
[43]
Khalil M, Hashmi U, Riaz R, Rukh Abbas S. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: A potential topical treatment for posterior segment diseases. Int J Biol Macromol 2020; 143: 483-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.256] [PMID: 31759018]
[44]
Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm 2009; 379(1): 131-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.020] [PMID: 19559775]
[45]
Li N, Zhuang CY, Wang M, Sui CG, Pan WS. Low molecular weight chitosan-coated liposomes for ocular drug delivery: In vitro and in vivo studies. Drug Deliv 2012; 19(1): 28-35.
[http://dx.doi.org/10.3109/10717544.2011.621994] [PMID: 22070752]
[46]
Zhang J, Wang S. Topical use of Coenzyme Q10-loaded liposomes coated with trimethyl chitosan: Tolerance, precorneal retention and anti-cataract effect. Int J Pharm 2009; 372(1-2): 66-75.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.001] [PMID: 19437594]
[47]
Yu S, Wang QM, Wang X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm 2015; 480(1-2): 128-36.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.032] [PMID: 25615987]
[48]
Quinteros D, Vicario-de-la-Torre M, Andrés-Guerrero V, et al. Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of the melatonin analogue 5-MCA- NAT in rabbit eyes. PLoS One 2014; 9(10): e110344.
[http://dx.doi.org/10.1371/journal.pone.0110344] [PMID: 25329636]
[49]
Shen Y, Tu J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J 2007; 9(3): E371-7.
[http://dx.doi.org/10.1208/aapsj0903044] [PMID: 18170984]
[50]
Gomez-Ballesteros M, Lopez-Cano JJ, Bravo-Osuna I. Osmoprotectants in hybrid liposome/HPMC systems as potential glaucoma treatment Polymers 2019; 11(6): 929.
[51]
Hosny KM. Ciprofloxacin as ocular liposomal hydrogel. AAPS PharmSciTech 2010; 11(1): 241-6.
[http://dx.doi.org/10.1208/s12249-009-9373-4] [PMID: 20151337]
[52]
Feghhi M, Sharif Makhmalzadeh B, Farrahi F, Akmali M, Hasanvand N. Anti-microbial effect and in vivo ocular delivery of ciprofloxacin-loaded liposome through rabbit’s eye. Curr Eye Res 2020; 45(10): 1245-51.
[http://dx.doi.org/10.1080/02713683.2020.1728777] [PMID: 32045531]
[53]
Ghareb M DF. Development and in vitro/in vivo evaluation of liposomal gels for the sustained ocular delivery of latanoprost. J Clin Exp Ophthalmol 2015; 6(1): 2.
[http://dx.doi.org/10.4172/2155-9570.1000390]
[54]
Dong Y, Dong P, Huang D, et al. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm 2015; 91: 82-90.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.018] [PMID: 25643990]
[55]
Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies. AAPS PharmSciTech 2007; 8(1): E1-E12.
[http://dx.doi.org/10.1208/pt0801001] [PMID: 17408209]
[56]
Zhang J, Liang X, Li X, et al. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress. Drug Dev Ind Pharm 2016; 42(4): 546-53.
[http://dx.doi.org/10.3109/03639045.2015.1088867] [PMID: 26393779]
[57]
Shimokawa T, Fukuta T, Inagi T, Kogure K. Protective effect of high-affinity liposomes encapsulating astaxanthin against corneal disorder in the in vivo rat dry eye disease model. J Clin Biochem Nutr 2020; 66(3): 224-32.
[http://dx.doi.org/10.3164/jcbn.19-102] [PMID: 32523249]
[58]
Mehanna MM, Elmaradny HA, Samaha MW. Mucoadhesive liposomes as ocular delivery system: Physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm 2010; 36(1): 108-18.
[http://dx.doi.org/10.3109/03639040903099751] [PMID: 19656004]
[59]
Chen H, Pan H, Li P, et al. The potential use of novel chitosan- coated deformable liposomes in an ocular drug delivery system. Colloids Surf B Biointerfaces 2016; 143: 455-62.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.061] [PMID: 27037783]
[60]
Elsana H, Olusanya TOB, Carr-wilkinson J, Darby S, Faheem A, Elkordy AA. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci Rep 2019; 9(1): 15120.
[http://dx.doi.org/10.1038/s41598-019-51065-4] [PMID: 31641141]
[61]
Gonzalez Gomez A, Syed S, Marshall K, Hosseinidoust Z. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS Omega 2019; 4(6): 10866-76.
[http://dx.doi.org/10.1021/acsomega.9b00825] [PMID: 31460184]
[62]
Elbialy NS, Abdol-Azim BM, Shafaa MW, El Shazly LH, El Shazly AH, Khalil WA. Enhancement of the ocular therapeutic effect of prednisolone acetate by liposomal entrapment. J Biomed Nanotechnol 2013; 9(12): 2105-16.
[http://dx.doi.org/10.1166/jbn.2013.1711] [PMID: 24266264]
[63]
Assil KK, Frucht-Perry J, Ziegler E, Schanzlin DJ, Schneiderman T, Weinreb RN. Tobramycin liposomes. Single subconjunctival therapy of pseudomonal keratitis. Invest Ophthalmol Vis Sci 1991; 32(13): 3216-20.
[PMID: 1748553]
[64]
Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 2015; 5(3): 231-42.
[http://dx.doi.org/10.1007/s13346-015-0220-8] [PMID: 25787731]
[65]
Ren T, Lin X, Zhang Q, et al. Encapsulation of azithromycin ion pair in liposome for enhancing ocular delivery and therapeutic efficacy on dry eye. Mol Pharm 2018; 15(11): 4862-71.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00516] [PMID: 30251864]
[66]
Altamirano-Vallejo JC, Navarro-Partida J, Gonzalez-De la Rosa A, et al. Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations. J Ocul Pharmacol Ther 2018; 34(5): 416-25.
[http://dx.doi.org/10.1089/jop.2017.0099] [PMID: 29584529]
[67]
Gonzalez-De la Rosa A, Navarro-Partida J, Altamirano-Vallejo JC, et al. Novel triamcinolone acetonide-loaded liposomes topical formulation for the treatment of cystoid macular edema after cataract surgery: A pilot study. J Ocul Pharmacol Ther 2019; 35(2): 106-15.
[http://dx.doi.org/10.1089/jop.2018.0101] [PMID: 30614750]
[68]
Moustafa MA, Elnaggar YSR, El-Refaie WM, Abdallah OY. Hyalugel-integrated liposomes as a novel ocular nanosized delivery system of fluconazole with promising prolonged effect. Int J Pharm 2017; 534(1-2): 14-24.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.007] [PMID: 28987453]
[69]
D’Souza GGM. Liposomes: Methods and protocols. Methods in Molecular Biology. Humana New York 2017; p. 1522.
[70]
Silvius JR. Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. Lipid-Protein Interactions. New York: John Wiley & Sons, Inc. 1982.
[71]
Marsh D. Thermodynamics of phospholipid self-assembly. Biophys J 2012; 102(5): 1079-87.
[http://dx.doi.org/10.1016/j.bpj.2012.01.049] [PMID: 22404930]
[72]
Angelini G, Campestre C, Boncompagni S, Gasbarri C. Liposomes entrapping β-cyclodextrin/ibuprofen inclusion complex: Role of the host and the guest on the bilayer integrity and microviscosity. Chem Phys Lipids 2017; 209: 61-5.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.09.004] [PMID: 28986064]
[73]
Lu W-L, Qi X-R. Liposome-based drug delivery systems. Biomaterial Engineering. Springer. US 2021.
[http://dx.doi.org/10.1007/978-3-662-49320-5]
[74]
Thassu D, Deleers M, Pathak Y. Nanoparticulate drug delivery systems. New York: Informa 2007; p. 89.
[http://dx.doi.org/10.1201/9781420008449]
[75]
Handel T. Methods in enzymology. Netherlands: Elsevier 2005; p. 97.
[76]
Cortesi R, Esposito E, Gambarin S, Telloli P, Menegatti E, Nastruzzi C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J Microencapsul 1999; 16(2): 251-6.
[http://dx.doi.org/10.1080/026520499289220] [PMID: 10080118]
[77]
Otake K, Shimomura T, Goto T, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006; 22(6): 2543-50.
[http://dx.doi.org/10.1021/la051654u] [PMID: 16519453]
[78]
Kirby C, Gregoriadis G. Dehydration-rehydration vesicles: A simple method for high yield drug entrapment in liposomes. Nat Biotechnol 1984; 2(11): 979-84.
[http://dx.doi.org/10.1038/nbt1184-979]
[79]
Rewar S, Singh CJ, Bansal BK. A vital role of liposome’s on controlled and novel drug delivery. Int J Pharm Biol Arch 2014; 5: 51-63.
[80]
Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 2010; 20(3): 228-43.
[http://dx.doi.org/10.3109/08982100903347923] [PMID: 19899957]
[81]
Dua JS. Liposome: Methods of preparation and applications. Int J Pharm Stud Res 2013; 14-20.
[82]
Mendez R, Banerjee S. Sonication-based basic protocol for liposome synthesis. Methods Mol Biol 2017; 1609: 255-60.
[http://dx.doi.org/10.1007/978-1-4939-6996-8_21] [PMID: 28660588]
[83]
Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ. Comparison of liposomes formed by sonication and extrusion: Rotational and translational diffusion of an embedded chromophore. Langmuir 2007; 23(23): 11677-83.
[http://dx.doi.org/10.1021/la7020963] [PMID: 17939695]
[84]
Weissig V. Liposomes, methods in molecular biology. New York: Springer 2010; p. 29.
[85]
Weissig V. Liposomes, methods in molecular biology. New York: Springer 2010; p. 445.
[86]
Magotoshi M, Abu-Zaid SS, Noriaki T. Size and permeability of liposomes extruded through polycarbonate membranes. Int J Pharm 1983; 17(2-3): 215-24.
[http://dx.doi.org/10.1016/0378-5173(83)90034-0]
[87]
van Swaay D, deMello A. Microfluidic methods for forming liposomes. Lab Chip 2013; 13(5): 752-67.
[http://dx.doi.org/10.1039/c2lc41121k] [PMID: 23291662]
[88]
Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature 2014; 507(7491): 181-9.
[http://dx.doi.org/10.1038/nature13118] [PMID: 24622198]
[89]
Williams MS, Longmuir KJ, Yager P. A practical guide to the staggered herringbone mixer. Lab Chip 2008; 8(7): 1121-9.
[http://dx.doi.org/10.1039/b802562b] [PMID: 18584088]
[90]
Cheung CCL, Al-Jamal WT. Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content. Int J Pharm 2019; 566: 687-96.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.033] [PMID: 31212051]
[91]
Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: Potential and limiting factors. Sci Rep 2016; 6(1): 25876.
[http://dx.doi.org/10.1038/srep25876] [PMID: 27194474]
[92]
Li H, Liu Y, Zhang Y, et al. Liposomes as a novel ocular delivery system for brinzolamide: In vitro and in vivo studies. AAPS PharmSciTech 2016; 17(3): 710-7.
[http://dx.doi.org/10.1208/s12249-015-0382-1] [PMID: 26335415]
[93]
Abdel-Rhaman MS, Soliman W, Habib F, Fathalla D. A new long-acting liposomal topical antifungal formula: Human clinical study. Cornea 2012; 31(2): 126-9.
[http://dx.doi.org/10.1097/ICO.0b013e318221cf12] [PMID: 22138587]
[94]
Mehanna MM, Elmaradny HA, Samaha MW. Ciprofloxacin liposomes as vesicular reservoirs for ocular delivery: Formulation, optimization, and in vitro characterization. Drug Dev Ind Pharm 2009; 35(5): 583-93.
[http://dx.doi.org/10.1080/03639040802468024] [PMID: 19031311]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy