Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Effects of Sex Differences and Combined Use of Clozapine on Initial Dosage Optimization of Valproic Acid in Patients with Bipolar Disorder

Author(s): Wei Shen, Ke Hu, Hao-Zhe Shi, Lei Jiang, Yi-Jia Zhang, Su-Mei He*, Cun Zhang*, Xiao Chen* and Dong-Dong Wang*

Volume 30, Issue 29, 2024

Published on: 09 July, 2024

Page: [2290 - 2302] Pages: 13

DOI: 10.2174/0113816128323367240704095109

Price: $65

Abstract

Background: Due to the narrow therapeutic window and large pharmacokinetic variation of valproic acid (VPA), it is difficult to make an optimal dosage regimen. The present study aims to optimize the initial dosage of VPA in patients with bipolar disorder.

Methods: A total of 126 patients with bipolar disorder treated by VPA were included to construct the VPA population pharmacokinetic model retrospectively. Sex differences and combined use of clozapine were found to significantly affect VPA clearance in patients with bipolar disorder. The initial dosage of VPA was further optimized in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively.

Results: The CL/F and V/F of VPA in patients with bipolar disorder were 11.3 L/h and 36.4 L, respectively. It was found that sex differences and combined use of clozapine significantly affected VPA clearance in patients with bipolar disorder. At the same weight, the VPA clearance rates were 1.134, 1, 1.276884, and 1.126 in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively. This study further optimized the initial dosage of VPA in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively.

Conclusion: This study is the first to investigate the initial dosage optimization of VPA in patients with bipolar disorder based on sex differences and the combined use of clozapine. Male patients had higher clearance, and the recommended initial dose decreased with increasing weight, providing a reference for the precision drug use of VPA in clinical patients with bipolar disorder.

[1]
Carvalho AF, Firth J, Vieta E. Bipolar disorder. N Engl J Med 2020; 383(1): 58-66.
[http://dx.doi.org/10.1056/NEJMra1906193] [PMID: 32609982]
[2]
McIntyre RS, Berk M, Brietzke E, et al. Bipolar disorders. Lancet 2020; 396(10265): 1841-56.
[http://dx.doi.org/10.1016/S0140-6736(20)31544-0] [PMID: 33278937]
[3]
Vigo D, Thornicroft G, Atun R. Estimating the true global burden of mental illness. Lancet Psychiatry 2016; 3(2): 171-8.
[http://dx.doi.org/10.1016/S2215-0366(15)00505-2] [PMID: 26851330]
[4]
Rantala MJ, Luoto S, Borráz-León JI, Krams I. Bipolar disorder: An evolutionary psychoneuroimmunological approach. Neurosci Biobehav Rev 2021; 122: 28-37.
[http://dx.doi.org/10.1016/j.neubiorev.2020.12.031] [PMID: 33421542]
[5]
Haggarty SJ, Karmacharya R, Perlis RH. Advances toward precision medicine for bipolar disorder: Mechanisms & molecules. Mol Psychiatry 2021; 26(1): 168-85.
[http://dx.doi.org/10.1038/s41380-020-0831-4] [PMID: 32636474]
[6]
Vieta E, Berk M, Schulze TG, et al. Bipolar disorders. Nat Rev Dis Primers 2018; 4(1): 18008.
[http://dx.doi.org/10.1038/nrdp.2018.8] [PMID: 29516993]
[7]
Fontana E, Mandolini GM, Delvecchio G, Bressi C, Soares JC, Brambilla P. Intravenous valproate in the treatment of acute manic episode in bipolar disorder: A review. J Affect Disord 2020; 260: 738-43.
[http://dx.doi.org/10.1016/j.jad.2019.08.071] [PMID: 31581039]
[8]
Pisanu C, Heilbronner U, Squassina A. The role of pharmacogenomics in bipolar disorder: Moving towards precision medicine. Mol Diagn Ther 2018; 22(4): 409-20.
[http://dx.doi.org/10.1007/s40291-018-0335-y] [PMID: 29790107]
[9]
Cipriani A, Reid K, Young AH, Macritchie K, Geddes J. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Libr 2013; 2013(10): CD003196.
[http://dx.doi.org/10.1002/14651858.CD003196.pub2] [PMID: 24132760]
[10]
Arnbjerg CJ, Musoni-Rwililiza E, Rurangwa NU, et al. Effectiveness of structured group psychoeducation for people with bipolar disorder in Rwanda: A randomized open-label superiority trial. J Affect Disord 2024; 356: 405-13.
[http://dx.doi.org/10.1016/j.jad.2024.04.071] [PMID: 38640974]
[11]
Azevedo J, Swales M, Carreiras D, Guiomar R, Macedo A, Castilho P. BI-REAL: A 12-session DBT skills group intervention adapted for bipolar disorder – A feasibility randomised pilot trial. J Affect Disord 2024; 356: 394-404.
[http://dx.doi.org/10.1016/j.jad.2024.04.033] [PMID: 38615843]
[12]
Chen PH, Hsiao CY, Chiang SJ, Chung KH, Tsai SY. Association of lipids and inflammatory markers with left ventricular wall thickness in patients with bipolar disorder. J Affect Disord 2024; 358: 12-8.
[http://dx.doi.org/10.1016/j.jad.2024.05.020] [PMID: 38705523]
[13]
Chen Z, Wang B, Huang Y, Wang X, Li W, Wang M. Pathogenesis or a response to lithium? A novel perspective for mitochondrial mass fluctuation of naïve T cells in patients with bipolar disorder. J Affect Disord 2024; 355: 86-94.
[http://dx.doi.org/10.1016/j.jad.2024.03.095] [PMID: 38521135]
[14]
Holm M, Tanskanen A, Tiihonen J, Taipale H. Medication use and sickness absence from work in bipolar disorder: A nationwide register-based study. World Psychiatry 2024; 23(2): 296-8.
[http://dx.doi.org/10.1002/wps.21213] [PMID: 38727041]
[15]
Karaca A, Şener DK, Kundakçi N. Being a child of a parent with a diagnosis of schizophrenia or bipolar disorder: A qualitative study. Arch Psychiatr Nurs 2024; 50: 94-9.
[http://dx.doi.org/10.1016/j.apnu.2024.03.011] [PMID: 38789240]
[16]
Klaus F, Ng HX, Barbosa IG, et al. Cognition in older age bipolar disorder: An analysis of archival data across the globe. J Affect Disord 2024; 355: 231-8.
[http://dx.doi.org/10.1016/j.jad.2024.03.126] [PMID: 38548199]
[17]
Knorr U, Simonsen AH, Nilsson J, et al. Cerebrospinal fluid synaptic biomarker changes in bipolar disorder – A longitudinal case-control study. J Affect Disord 2024; 358: 250-9.
[http://dx.doi.org/10.1016/j.jad.2024.05.034] [PMID: 38723679]
[18]
Lane E, Joshi D, Guimond S, et al. Exploring current smartphone-based cognitive assessments in schizophrenia and bipolar disorder. Schizophr Res Cogn 2024; 37: 100309.
[http://dx.doi.org/10.1016/j.scog.2024.100309] [PMID: 38550527]
[19]
Musoni-Rwililiza E, Arnbjerg CJ, Rurangwa NU, et al. Adaption and validation of the Rwandese version of the Mood Disorder Questionnaire for the screening of bipolar disorder. Compr Psychiatry 2024; 132: 152477.
[http://dx.doi.org/10.1016/j.comppsych.2024.152477] [PMID: 38583298]
[20]
Porta-Casteràs D, Vicent-Gil M, Serra-Blasco M, et al. Increased grey matter volumes in the temporal lobe and its relationship with cognitive functioning in euthymic patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132: 110962.
[http://dx.doi.org/10.1016/j.pnpbp.2024.110962] [PMID: 38365103]
[21]
Stacey D, Suppiah V, Benyamin B, Lee SH, Hyppönen E. In-silico functional analyses identify TMPRSS15-mediated intestinal absorption of lithium as a modulator of lithium response in bipolar disorder. J Affect Disord 2024; 358: 416-21.
[http://dx.doi.org/10.1016/j.jad.2024.05.050] [PMID: 38735581]
[22]
Teng Z, Xu X, Chen X, et al. Increased circulating cell-free mitochondrial DNA in plasma of first-diagnosed drug-naïve bipolar disorder patients: A case-control and 4-week follow-up study. J Affect Disord 2024; 355: 378-84.
[http://dx.doi.org/10.1016/j.jad.2024.03.113] [PMID: 38537754]
[23]
Wang T, Yang J, Zhu Y, et al. Evaluation of metabolomics-based urinary biomarker models for recognizing major depression disorder and bipolar disorder. J Affect Disord 2024; 356: 1-12.
[http://dx.doi.org/10.1016/j.jad.2024.03.114] [PMID: 38548210]
[24]
Zhou Z, Xu Z, Lai W, et al. Reduced myelin content in bipolar disorder: A study of inhomogeneous magnetization transfer. J Affect Disord 2024; 356: 363-70.
[http://dx.doi.org/10.1016/j.jad.2024.04.012] [PMID: 38615848]
[25]
Chen Z, Huang Y, Wang B, et al. T cells: An emerging cast of roles in bipolar disorder. Transl Psychiatry 2023; 13(1): 153.
[http://dx.doi.org/10.1038/s41398-023-02445-y] [PMID: 37156764]
[26]
Perucca E. Pharmacological and therapeutic properties of valproate: A summary after 35 years of clinical experience. CNS Drugs 2002; 16(10): 695-714.
[http://dx.doi.org/10.2165/00023210-200216100-00004] [PMID: 12269862]
[27]
Bowden CL, Karren NU. Anticonvulsants in bipolar disorder. Aust N Z J Psychiatry 2006; 40(5): 386-93.
[http://dx.doi.org/10.1080/j.1440-1614.2006.01815.x] [PMID: 16683963]
[28]
Chateauvieux S, Morceau F, Dicato M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010; 2010: 479364.
[http://dx.doi.org/10.1155/2010/479364] [PMID: 20798865]
[29]
Zheng P, Yu Z, Mo L, et al. An individualized medication model of sodium valproate for patients with bipolar disorder based on machine learning and deep learning techniques. Front Pharmacol 2022; 13: 890221.
[http://dx.doi.org/10.3389/fphar.2022.890221] [PMID: 36339624]
[30]
Thase ME. Maintenance therapy for bipolar disorder. J Clin Psychiatry 2008; 69(11): e32.
[http://dx.doi.org/10.4088/JCP.1108e32] [PMID: 19200424]
[31]
Revicki DA, Hirschfeld RMA, Ahearn EP, Weisler RH, Palmer C, Keck PE Jr. Effectiveness and medical costs of divalproex versus lithium in the treatment of bipolar disorder: Results of a naturalistic clinical trial. J Affect Disord 2005; 86(2-3): 183-93.
[http://dx.doi.org/10.1016/j.jad.2005.01.002] [PMID: 15935238]
[32]
Chen YCB, Liang CS, Wang LJ, et al. Comparative effectiveness of valproic acid in different serum concentrations for maintenance treatment of bipolar disorder: A retrospective cohort study using target trial emulation framework. EClinicalMedicine 2022; 54: 101678.
[http://dx.doi.org/10.1016/j.eclinm.2022.101678] [PMID: 36193173]
[33]
Fleming J, Chetty M. Therapeutic monitoring of valproate in psychiatry: How far have we progressed? Clin Neuropharmacol 2006; 29(6): 350-60.
[http://dx.doi.org/10.1097/01.WNF.0000228209.69524.E8] [PMID: 17095899]
[34]
Methaneethorn J. A systematic review of population pharmacokinetics of valproic acid. Br J Clin Pharmacol 2018; 84(5): 816-34.
[http://dx.doi.org/10.1111/bcp.13510] [PMID: 29328514]
[35]
Gidal B, Spencer N, Maly M, et al. Valproate-mediated disturbances of hemostasis. Neurology 1994; 44(8): 1418-22.
[http://dx.doi.org/10.1212/WNL.44.8.1418] [PMID: 8058141]
[36]
Teixeira-da-Silva P, Pérez-Blanco JS, Santos-Buelga D, Otero MJ, García MJ. Population pharmacokinetics of valproic acid in pediatric and adult caucasian patients. Pharmaceutics 2022; 14(4): 811.
[http://dx.doi.org/10.3390/pharmaceutics14040811] [PMID: 35456645]
[37]
Zang YN, Guo W, Niu MX, et al. Population pharmacokinetics of valproic acid in adult Chinese patients with bipolar disorder. Eur J Clin Pharmacol 2022; 78(3): 405-18.
[http://dx.doi.org/10.1007/s00228-021-03246-2] [PMID: 34854947]
[38]
Gu X, Zhu M, Sheng C, et al. Population pharmacokinetics of unbound valproic acid in pediatric epilepsy patients in China: A protein binding model. Eur J Clin Pharmacol 2021; 77(7): 999-1009.
[http://dx.doi.org/10.1007/s00228-020-03080-y] [PMID: 33423079]
[39]
El Orche A, Cheikh A, Johnson JB, et al. A novel approach for therapeutic drug monitoring of valproic acid using FT-IR spectroscopy and nonlinear support vector regression. J AOAC Int 2023; 106(4): 1070-6.
[http://dx.doi.org/10.1093/jaoacint/qsac146] [PMID: 36367248]
[40]
Hunt MF, Clark KT, Grant MC, et al. Therapeutic drug monitoring of valproic acid in extracorporeal membrane oxygenation. Perfusion 2021; 36(8): 868-72.
[http://dx.doi.org/10.1177/0267659120972272] [PMID: 33198577]
[41]
Li R, Chen Z, Tang S, et al. Association of valproic acid and its main metabolites’ plasma concentrations with clinical outcomes among epilepsy patients: A 10-year retrospective study based on therapeutic drug monitoring. Drug Metab Dispos 2024; 52(3): 210-7.
[http://dx.doi.org/10.1124/dmd.123.001539] [PMID: 38195521]
[42]
Li Y, Jiang Y, Cao H, et al. Therapeutic drug monitoring of valproic acid using a dried plasma spot sampling device. J Mass Spectrom 2021; 56(4): e4603.
[http://dx.doi.org/10.1002/jms.4603] [PMID: 33729629]
[43]
Shaikh AS, Liu H, Li Y, Cao L, Guo R. Therapeutic drug monitoring of valproic acid. Pak J Pharm Sci 2018; 31(4(Special)): 1773-6.
[PMID: 30203778]
[44]
Singu BS, Morrison H, Irengeya L, Verbeeck RK. Therapeutic drug monitoring of phenytoin and valproic acid in critically ill patients at Windhoek Central Hospital, Namibia. Afr J Lab Med 2022; 11(1): 1628.
[http://dx.doi.org/10.4102/ajlm.v11i1.1628] [PMID: 35937763]
[45]
Ahmed K, Ibrahim A, Gonzalez D, Nur A. Population pharmacokinetics and model-based dose optimization of vancomycin in sudanese adult patients with renal impairment. Drug Des Devel Ther 2024; 18: 81-95.
[http://dx.doi.org/10.2147/DDDT.S432439] [PMID: 38260090]
[46]
Bulitta JB, Fang E, Stryjewski ME, et al. Population pharmacokinetic rationale for intravenous contezolid acefosamil followed by oral contezolid dosage regimens. Antimicrob Agents Chemother 2024; 68(4): e01400-23.
[http://dx.doi.org/10.1128/aac.01400-23] [PMID: 38415667]
[47]
Feng H, Wang X, Zheng W, et al. Initial dosage optimisation of cyclosporine in Chinese paediatric patients undergoing allogeneic haematopoietic stem cell transplantation based on population pharmacokinetics: A retrospective study. BMJ Paediatr Open 2023; 7(1): e002003.
[http://dx.doi.org/10.1136/bmjpo-2023-002003] [PMID: 37643815]
[48]
Han HH, Rui M, Yang Y, et al. The impact of spironolactone co-administration on cyclosporin initial dosage optimization for pediatric refractory nephrotic syndrome. Curr Pharm Des 2024; 30(18): 1419-32.
[http://dx.doi.org/10.2174/0113816128307797240416053723] [PMID: 38639271]
[49]
Jing Y, Kong Y, Hou X, et al. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients. J Clin Pharm Ther 2021; 46(4): 1117-28.
[http://dx.doi.org/10.1111/jcpt.13407] [PMID: 33768546]
[50]
Li X, Cheng Y, Chen B, et al. Population pharmacokinetics of polymyxin B in patients with liver dysfunction. Br J Clin Pharmacol 2023; 89(12): 3561-72.
[http://dx.doi.org/10.1111/bcp.15855] [PMID: 37461291]
[51]
Lim CP, Tseng SH, Neoh CCC, Chen Q, Poon WB. External validation of a vancomycin population pharmacokinetic model and developing a new dosage regimen in neonates. Eur J Drug Metab Pharmacokinet 2022; 47(5): 687-97.
[http://dx.doi.org/10.1007/s13318-022-00781-w] [PMID: 35804218]
[52]
Shimamoto Y, Verstegen RHJ, Mizuno T, Schechter T, Allen U, Ito S. Population pharmacokinetics of vancomycin in paediatric patients with febrile neutropenia and augmented renal clearance: Development of new dosing recommendations. J Antimicrob Chemother 2021; 76(11): 2932-40.
[http://dx.doi.org/10.1093/jac/dkab302] [PMID: 34480578]
[53]
Wang C, Chen J, Yang B, et al. Determination of vancomycin exposure target and individualized dosing recommendations for critically ill patients undergoing continuous renal replacement therapy. Pharmacotherapy 2023; 43(3): 180-8.
[http://dx.doi.org/10.1002/phar.2771] [PMID: 36714991]
[54]
Zhu X, Zhang M, Wen Y, Shang D. Machine learning advances the integration of covariates in population pharmacokinetic models: Valproic acid as an example. Front Pharmacol 2022; 13: 994665.
[http://dx.doi.org/10.3389/fphar.2022.994665] [PMID: 36324679]
[55]
Egelund EF, Isaza R, Brock AP, Alsultan A, An G, Peloquin CA. Population pharmacokinetics of rifampin in the treatment of Mycobacterium tuberculosis in Asian elephants. J Vet Pharmacol Ther 2015; 38(2): 137-43.
[http://dx.doi.org/10.1111/jvp.12156] [PMID: 25236765]
[56]
Eley VA, Christensen R, Ryan R, et al. Prophylactic cefazolin dosing in women with body mass index >35 kg·m-2 undergoing cesarean delivery: A pharmacokinetic study of plasma and interstitial fluid. Anesth Analg 2020; 131(1): 199-207.
[http://dx.doi.org/10.1213/ANE.0000000000004766] [PMID: 32250982]
[57]
Fredj NB, Romdhane HB, Woillard JB, et al. Population pharmacokinetic model of isoniazid in patients with tuberculosis in Tunisia. Int J Infect Dis 2021; 104: 562-7.
[http://dx.doi.org/10.1016/j.ijid.2021.01.033] [PMID: 33476758]
[58]
Kim TH, Shin S, Bulitta JB, Youn YS, Yoo SD, Shin BS. Development of a physiologically relevant population pharmacokinetic in vitroin vivo correlation approach for designing extended-release oral dosage formulation. Mol Pharm 2017; 14(1): 53-65.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00677] [PMID: 27809538]
[59]
Li Z, Liu Y, Jiao Z, et al. Population pharmacokinetics of vancomycin in chinese ICU neonates: Initial dosage recommendations. Front Pharmacol 2018; 9: 603.
[http://dx.doi.org/10.3389/fphar.2018.00603] [PMID: 29997498]
[60]
Liu Y, Qiu T, Liu Y, et al. Model-based voriconazole dose pptimization in Chinese adult patients with hematologic malignancies. Clin Ther 2019; 41(6): 1151-63.
[http://dx.doi.org/10.1016/j.clinthera.2019.04.027] [PMID: 31079860]
[61]
Mehta K, Ravimohan S, Pasipanodya JG, et al. Optimizing ethambutol dosing among HIV/tuberculosis co-infected patients: A population pharmacokinetic modelling and simulation study. J Antimicrob Chemother 2019; 74(10): 2994-3002.
[http://dx.doi.org/10.1093/jac/dkz265] [PMID: 31273386]
[62]
Milliken E, de Zwart AES, Alffenaar JWC, et al. Population pharmacokinetics of ribavirin in lung transplant recipients and examination of current and alternative dosing regimens. J Antimicrob Chemother 2019; 74(3): 691-8.
[http://dx.doi.org/10.1093/jac/dky466] [PMID: 30452661]
[63]
Ramon-Lopez A, Allen JM, Thomson AH, et al. Dosing regimen of meropenem for adults with severe burns: A population pharmacokinetic study with Monte Carlo simulations. J Antimicrob Chemother 2015; 70(3): 882-90.
[http://dx.doi.org/10.1093/jac/dku429] [PMID: 25362574]
[64]
Rao Q, Yang Y, Wang S, et al. Optimal dosing regimen of biapenem based on population pharmacokinetic/pharmacodynamic modelling and Monte Carlo simulation in patients with febrile neutropenia and haematological malignancies. Int J Antimicrob Agents 2023; 62(1): 106841.
[http://dx.doi.org/10.1016/j.ijantimicag.2023.106841] [PMID: 37160241]
[65]
Liao M, Wang M, Zhu X, Zhao L, Zhao M. Tacrolimus population pharmacokinetic model in adult Chinese patients with nephrotic syndrome and dosing regimen identification using monte carlo simulations. Ther Drug Monit 2022; 44(5): 615-24.
[http://dx.doi.org/10.1097/FTD.0000000000001008] [PMID: 36101928]
[66]
Xu H, Zhou W, Zhou D, Li J, Al-Huniti N. Evaluation of aztreonam dosing regimens in patients with normal and impaired renal function: A population pharmacokinetic modeling and monte carlo simulation analysis. J Clin Pharmacol 2017; 57(3): 336-44.
[http://dx.doi.org/10.1002/jcph.810] [PMID: 27530649]
[67]
Anderson BJ, Holford NHG. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 2008; 48(1): 303-32.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094708] [PMID: 17914927]
[68]
Hiemke C, Bergemann N, Clement HW. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2017; 51(1-2): 9-62.
[69]
Yatham LN, Kennedy SH, Parikh SV, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord 2018; 20(2): 97-170.
[http://dx.doi.org/10.1111/bdi.12609] [PMID: 29536616]
[70]
Atmaca M. Valproate and neuroprotective effects for bipolar disorder. Int Rev Psychiatry 2009; 21(4): 410-3.
[http://dx.doi.org/10.1080/09540260902962206] [PMID: 20374154]
[71]
Zang YN, Guo W, Dong F, Li AN, de Leon J, Ruan CJ. Published population pharmacokinetic models of valproic acid in adult patients: A systematic review and external validation in a Chinese sample of inpatients with bipolar disorder. Expert Rev Clin Pharmacol 2022; 15(5): 621-35.
[http://dx.doi.org/10.1080/17512433.2022.2075849] [PMID: 35536685]
[72]
Bazinet RP, Weis MT, Rapoport SI, Rosenberger TA. Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl–CoA by brain microsomal long-chain fatty acyl–CoA synthetases: relevance to bipolar disorder. Psychopharmacology (Berl) 2006; 184(1): 122-9.
[http://dx.doi.org/10.1007/s00213-005-0272-4] [PMID: 16344985]
[73]
Methaneethorn J, Leelakanok N. Predictive ability of published population pharmacokinetic models of valproic acid in Thai manic patients. J Clin Pharm Ther 2021; 46(1): 198-207.
[http://dx.doi.org/10.1111/jcpt.13280] [PMID: 32986889]
[74]
Jiang DC, Wang L. Population pharmacokinetic model of valproate and prediction of valproate serum concentrations in children with epilepsy. Acta Pharmacol Sin 2004; 25(12): 1576-83.
[PMID: 15569400]
[75]
Correa T, Rodríguez I, Romano S. Population pharmacokinetics of valproate in Mexican children with epilepsy. Biopharm Drug Dispos 2008; 29(9): 511-20.
[http://dx.doi.org/10.1002/bdd.636] [PMID: 19067436]
[76]
Park HM, Kang SS, Lee YB, et al. Population pharmacokinetics of intravenous valproic acid in Korean patients. J Clin Pharm Ther 2002; 27(6): 419-25.
[http://dx.doi.org/10.1046/j.1365-2710.2002.00440.x] [PMID: 12472981]
[77]
Jiao Z, Li XG, Sheng DW, et al. [Model informed precision dosing: China expert consensus report]. Chin J. Clin Pharmacol Ther 2021; 26(11): 1215-28.
[78]
Tabrisi R, Harun-Rashid MD, Montero J. Clozapine but not lithium reverses aberrant tyrosine uptake in patients with bipolar disorder. Psychopharmacology 2023; 240(8): 1667-76.
[http://dx.doi.org/10.1007/s00213-023-06397-5]
[79]
Loo LWJ, Chew QH, Lin SK. Clozapine use for bipolar disorder: An asian psychotropic prescription patterns consortium study. J Clin Psychopharmacol 2023; 43(3): 278-82.
[80]
Wilkowska A, Wiglusz MS, Cubała WJ. Clozapine in treatment-resistant bipolar disorder with suicidality. Three case reports. Front Psychiatry 2019; 10: 520.
[http://dx.doi.org/10.3389/fpsyt.2019.00520] [PMID: 31379632]
[81]
Delgado A, Velosa J, Zhang J, Dursun SM, Kapczinski F, de Azevedo Cardoso T. Clozapine in bipolar disorder: A systematic review and meta-analysis. J Psychiatr Res 2020; 125: 21-7.
[http://dx.doi.org/10.1016/j.jpsychires.2020.02.026] [PMID: 32182485]
[82]
Forte A, Pompili M, Imbastaro B, et al. Effects on suicidal risk: Comparison of clozapine to other newer medicines indicated to treat schizophrenia or bipolar disorder. J Psychopharmacol 2021; 35(9): 1074-80.
[http://dx.doi.org/10.1177/02698811211029738] [PMID: 34291676]
[83]
Danek PJ, Basińska-Ziobroń A, Wójcikowski J, Daniel WA. Levomepromazine and clozapine induce the main human cytochrome P450 drug metabolizing enzyme CYP3A4. Pharmacol Rep 2021; 73(1): 303-8.
[http://dx.doi.org/10.1007/s43440-020-00157-4] [PMID: 32888176]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy