Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Polythiophene/Copper Vanadate Nanoribbons and their Electrochemical Sensing Properties for Detecting Benzoic Acid

In Press, (this is not the final "Version of Record"). Available online 09 July, 2024
Author(s): Xingxing Zhu, Yong Zhang*, Qianmin Cong, Zhengyu Cai and Lizhai Pei*
Published on: 09 July, 2024

DOI: 10.2174/0118764029318334240625115029

Price: $95

Abstract

Background: Excessive intake of benzoic acid may cause serious diseases, including disordered metabolism, abdominal pain, and diarrhea. Hence, it is important to explore a reliable method to determine the quantity of benzoic acid for protecting human health. In this regard, polythiophene/copper vanadate nanoribbon composites act as electrode materials for the detection of benzoic acid.

Objective: The objective of this research was to synthesize polythiophene/copper vanadate nanoribbons via an in-situ polymerization approach and evaluate their electrochemical performance for the detection of benzoic acid.

Methods: Polythiophene/copper vanadate nanoribbons were obtained via an in-situ polymerization approach. The obtained composite nanoribbons were analyzed using X-ray diffraction, electron microscopy, Fourier Transform Infrared Spectroscopy, and electrochemical method.

Results: Amorphous polythiophene nanoparticles with a size of less than 100 nm were homogeneously attached to the copper vanadate nanoribbons. Electrochemical sensing properties of the polythiophene/copper vanadate nanoribbons modified electrode for detecting benzoic acid were analyzed using the Cyclic Voltammetry (CV) method. An irreversible CV peak was observed at +0.36 V in 0.1 M KCl solution with 2 mM benzoic acid. The polythiophene/copper vanadate nanoribbons modified electrode indicated a linear range of 0.001-2 mM with the limit of detection (LOD) of 0.29 µM.

Conclusion: Polythiophene greatly enhanced the electrochemical sensing properties of copper vanadate nanoribbons. Polythiophene/copper vanadate nanoribbons modified electrode was found to be stable and repeatable owing to the synergistic effect of various components.

[1]
Cai, L.; Dong, J.; Wang, Y.; Chen, X. Thin-film microextraction coupled to surface enhanced Raman scattering for the rapid detection of benzoic acid in carbonated beverages. Talanta, 2018, 178, 268-273.
[http://dx.doi.org/10.1016/j.talanta.2017.09.040] [PMID: 29136821]
[2]
Farghaly, F.A.; Salam, H.K.; Hamada, A.M.; Radi, A.A. The role of benzoic acid, gallic acid and salicylic acid in protecting tomato callus cells from excessive boron stress. Sci. Hortic., 2021, 278, 109867.
[http://dx.doi.org/10.1016/j.scienta.2020.109867]
[3]
Sugihartono, V.E.; Mahasti, N.N.N.; Shih, Y.J.; Huang, Y.H. Photo-persulfate oxidation and mineralization of benzoic acid: Kinetics and optimization under UVC irradiation. Chemosphere, 2022, 296, 133663.
[http://dx.doi.org/10.1016/j.chemosphere.2022.133663] [PMID: 35063559]
[4]
Ding, M.; Peng, J.; Ma, S.; Zhang, Y. An environment-friendly procedure for the high performance liquid chromatography determination of benzoic acid and sorbic acid in soy sauce. Food Chem., 2015, 183, 26-29.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.025] [PMID: 25863605]
[5]
Yang, Y.; Xu, W.; Wu, M.; Mao, J.; Sha, R. Application of E-nose combined with ANN modelling for qualitative and quantitative analysis of benzoic acid in cola-type beverages. J. Food Meas. Charact., 2021, 15(6), 5131-5138.
[http://dx.doi.org/10.1007/s11694-021-01083-6]
[6]
Yu, M.; Wen, R.; Jiang, L.; Huang, S.; Fang, Z.; Chen, B.; Wang, L. Rapid analysis of benzoic acid and vitamin C in beverages by paper spray mass spectrometry. Food Chem., 2018, 268, 411-415.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.103] [PMID: 30064777]
[7]
D’Amore, T.; Di Taranto, A.; Berardi, G.; Vita, V.; Iammarino, M. Going green in food analysis: A rapid and accurate method for the determination of sorbic acid and benzoic acid in foods by capillary ion chromatography with conductivity detection. Lebensm. Wiss. Technol., 2021, 141, 110841.
[http://dx.doi.org/10.1016/j.lwt.2020.110841]
[8]
Selimoğlu, F.; Ünal, N.; Ceren Ertekin, Z.; Dinç, E. PARAFAC and MCR-ALS approaches to the pKa determination of benzoic acid and its derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 248, 119253.
[http://dx.doi.org/10.1016/j.saa.2020.119253] [PMID: 33302215]
[9]
Montilla, F.; Michaud, P.A.; Morallón, E.; Vázquez, J.L.; Comninellis, C. Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim. Acta, 2002, 47(21), 3509-3513.
[http://dx.doi.org/10.1016/S0013-4686(02)00318-3]
[10]
Shan, D.; Shi, Q.; Zhu, D.; Xue, H. Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline–polyacrylonitrile composite matrix. Talanta, 2007, 72(5), 1767-1772.
[http://dx.doi.org/10.1016/j.talanta.2007.02.007] [PMID: 19071830]
[11]
Pei, L.; Qiu, F.; Ma, Y.; Lin, F.; Fan, C.; Ling, X. Polyaniline/Al bismuthate composite nanorods modified glassy carbon electrode for the detection of benzoic acid. Curr. Pharm. Anal., 2020, 16(2), 153-158.
[http://dx.doi.org/10.2174/1573412914666181017145307]
[12]
Ghalkhani, M.; Bakirhan, N.K.; Ozkan, S.A. Combination of efficiency with easiness, speed, and cheapness in development of sensitive electrochemical sensors. Crit. Rev. Anal. Chem., 2020, 50(6), 538-553.
[http://dx.doi.org/10.1080/10408347.2019.1664281] [PMID: 31559831]
[13]
Ghalkhani, M.; Alimohammadi, S. Functionalized carbon nanostructures for electroanalysis. In: Handbook of Functionalized Carbon Nanostructures; Barhoum, A.; Deshmukh, K., Eds.; Springer: Cham, 2023; pp. 1-33.
[http://dx.doi.org/10.1007/978-3-031-14955-9_48-1]
[14]
Ghalkhani, M.; Ghorbani-Bidkorbeh, F. Development of carbon nanostructured based electrochemical sensors for pharmaceutical analysis. Iran. J. Pharm. Res., 2019, 18(2), 658-669.
[http://dx.doi.org/10.22037/ijpr.2019.1100645] [PMID: 31531049]
[15]
Hakimi, F.; Ghalkhani, M.; Rashchi, F.; Dolati, A. Pulse electrodeposition synthesis of Ti/PbO2-IrO2 nano-composite electrode to restrict the OER in the zinc electrowinning. J. Environ. Chem. Eng., 2024, 12(2), 111985.
[http://dx.doi.org/10.1016/j.jece.2024.111985]
[16]
Rasi, F.; Sadeghi, S.; Ghalkhani, M. Graphitic carbon nitride/Ni doped copper hydroxide nanocomposite based electrochemical sensor for trace level detection of Ponceau 4R food colorant. J. Electrochem. Soc., 2022, 169(12), 127513.
[http://dx.doi.org/10.1149/1945-7111/aca837]
[17]
Zhang, Z.; Karimi-Maleh, H.; Wen, Y.; Darabi, R.; Wu, T.; Alostani, P.; Ghalkhani, M. Nanohybrid of antimonene@Ti3C2Tx-based electrochemical aptasensor for lead detection. Environ. Res., 2023, 233, 116355.
[http://dx.doi.org/10.1016/j.envres.2023.116355] [PMID: 37329944]
[18]
Ghalkhani, M.; Maghsoudi, S. Development of an electrochemical differential pH sensing system based on mebendazole and potassium ferrocyanide. J. Mater. Sci. Mater. Electron., 2017, 28(18), 13665-13672.
[http://dx.doi.org/10.1007/s10854-017-7209-7]
[19]
Han, G.; Yang, S.; Huang, Y.; Yang, J.; Chai, W.; Zhang, R.; Chen, D. Hydrothermal synthesis and electrochemical sensing properties of copper vanadate nanocrystals with controlled morphologies. Trans. Nonferrous Met. Soc. China, 2017, 27(5), 1105-1116.
[http://dx.doi.org/10.1016/S1003-6326(17)60129-8]
[20]
Kitiphatpiboon, N.; Sirisomboonchai, S.; Chen, M.; Li, S.; Li, X.; Wang, J.; Hao, X.; Abudula, A.; Guan, G. Facile fabrication of O vacancy rich CuVOx nanobelt@NiO nanosheet array for hydrogen evolution reaction. Electrochim. Acta, 2022, 405, 139623.
[http://dx.doi.org/10.1016/j.electacta.2021.139623]
[21]
Pei, L.; Lin, N.; Wei, T.; Liu, H.; Yu, H. Formation of copper vanadate nanobelts and their electrochemical behaviors for the determination of ascorbic acid. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(6), 2690-2700.
[http://dx.doi.org/10.1039/C4TA05946H]
[22]
Lin, N.; Pei, L.; Wei, T.; Liu, H.; Cai, Z. Electrochemical sensor based on glassy carbon electrode modified with copper vanadate nanobelts for detection of benzoic acid. IET Sci. Measur. Technol., 2016, 10(4), 247-252.
[http://dx.doi.org/10.1049/iet-smt.2015.0089]
[23]
Guascito, M.R.; Chirizzi, D.; Picca, R.A.; Mazzotta, E.; Malitesta, C. Ag nanoparticles capped by a nontoxic polymer: Electrochemical and spectroscopic characterization of a novel nanomaterial for glucose detection. Mater. Sci. Eng. C, 2011, 31(3), 606-611.
[http://dx.doi.org/10.1016/j.msec.2010.11.022]
[24]
Chen, H.J.; Lin, F.F.; Yu, C.H.; Xue, Z.Y.; Wang, Z.; Pei, L.Z.; Wu, H.; Wang, P.X.; Cong, Q.M.; Fan, C.G.; Ling, X.Z.X.; Cong, Q.M.; Fan, C.G. Ling. X. Z. Polyaniline/Ba bismuthate nanobelts for sensitive electrochemical detection of tartaric acid. Int. J. Electrochem. Sci., 2020, 15(2), 1742-1756.
[http://dx.doi.org/10.20964/2020.02.55]
[25]
Guo, X.Y.; Mao, Y.J.; Yu, C.H.; Qiu, F.L.; Pei, L.Z.; Ling, X.Z.; Zhang, Y.; Wang, M.C.; Fan, C.G. Polythiopene/copper bismuthate nanosheet nanocomposites modified glassy carbon electrode for electrochemical detection of benzoic acid. Int. J. Electrochem. Sci., 2020, 15(10), 10463-10475.
[http://dx.doi.org/10.20964/2020.10.29]
[26]
Chahma, M. Doped polythiophene chiral electrodes as electrochemical biosensors. Electrochem, 2021, 2(4), 677-688.
[http://dx.doi.org/10.3390/electrochem2040042]
[27]
So, R.C.; Carreon-Asok, A.C. Molecular design, synthetic strategies, and applications of cationic polythiophenes. Chem. Rev., 2019, 119(21), 11442-11509.
[http://dx.doi.org/10.1021/acs.chemrev.8b00773] [PMID: 31580649]
[28]
Kaloni, T.P.; Giesbrecht, P.K.; Schreckenbach, G.; Freund, M.S. Polythiophene: From fundamental perspectives to applications. Chem. Mater., 2017, 29(24), 10248-10283.
[http://dx.doi.org/10.1021/acs.chemmater.7b03035]
[29]
Xu, S.H.; Li, S.Y.; Wei, Y.X.; Zhang, L.; Xu, F. Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO2 nanoparticles under sunlight irradiation. React. Kinet. Mech. Catal., 2010, 101(1), 237-249.
[http://dx.doi.org/10.1007/s11144-010-0222-y]
[30]
Kong, F.; Wang, Y.; Zhang, J.; Xia, H.; Zhu, B.; Wang, Y.; Wang, S.; Wu, S. The preparation and gas sensitivity study of polythiophene/SnO2 composites. Mater. Sci. Eng. B, 2008, 150(1), 6-11.
[http://dx.doi.org/10.1016/j.mseb.2008.01.003]
[31]
Gao, H.; Wang, F.; Wang, S.; Wang, X.; Yi, Z.; Yang, H. Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Mater. Res. Bull., 2019, 115, 140-149.
[http://dx.doi.org/10.1016/j.materresbull.2019.03.021]
[32]
Dąbrowska, G.; Tabero, P.; Kurzawa, M. Phase relations in the Al2O3-V2O5-MoO3 system in the solid state. The crystal structure of AlVO4. J. Phase Equilibria Diffus., 2009, 30(3), 220-229.
[http://dx.doi.org/10.1007/s11669-009-9503-4]
[33]
Blonska-Tabero, A. Phases in the subsolidus area of the system CuO–V2O5–Fe2O3. J. Therm. Anal. Calorim., 2012, 109(2), 685-691.
[http://dx.doi.org/10.1007/s10973-012-2210-0]
[34]
Yong, C.; Renyuan, Q. IR and Raman studies of polythiophene prepared by electrochemical polymerization. Solid State Commun., 1985, 54(3), 211-213.
[http://dx.doi.org/10.1016/0038-1098(85)91068-3]
[35]
Sauvajol, J.L.; Chorro, C.; Lère-Porte, J.P.; Corriu, R.J.P.; Moreau, J.J.E.; Thépot, P.; Man, M.W.C. Electropolymerization of silythiophene monomers: FT-IR and Raman spectroscopy characterization of polythiophene films. Synth. Met., 1994, 62(3), 233-244.
[http://dx.doi.org/10.1016/0379-6779(94)90211-9]
[36]
Louhichi, B.; Bensalash, N.; Gadri, A. Electrochemical oxidation of benzoic acid derivatives on boron doped diamond: Voltammetric study and galvanostatic electrolyses. Chem. Eng. Technol., 2006, 29(8), 944-950.
[http://dx.doi.org/10.1002/ceat.200500342]
[37]
Pei, L.Z.; Ma, Y.; Qiu, F.L.; Lin, F.F.; Fan, C.G.; Ling, X.Z. In-situ synthesis of polynaphthylamine/graphene composites for the electrochemical sensing of benzoic acid. Mater. Res. Express, 2018, 6(1), 015053.
[http://dx.doi.org/10.1088/2053-1591/aae96e]
[38]
Morales, M.; Morante, S.; Escarpa, A.; González, M.C.; Reviejo, A.J.; Pingarrón, J.M. Design of a composite amperometric enzyme electrode for the control of the benzoic acid content in food. Talanta, 2002, 57(6), 1189-1198.
[http://dx.doi.org/10.1016/S0039-9140(02)00236-9] [PMID: 18968725]
[39]
Cai, Z.Y.; Pei, L.Z.; Xie, Y.K.; Fan, C.G.; Fu, D.G. Electrochemical determination of benzoic acid using CuGeO3 nanowire modified glassy carbon electrode. Meas. Sci. Technol., 2013, 24(9), 095701.
[http://dx.doi.org/10.1088/0957-0233/24/9/095701]
[40]
Azadbakht, A.; Abbasi, A.R.; Derikvand, Z.; Karimi, Z. The electrochemical behavior of Au/AuNPs/PNA/ZnSe-QD/ACA electrode towards CySH oxidation. Nano-Micro Lett., 2015, 7(2), 152-164.
[http://dx.doi.org/10.1007/s40820-014-0028-y]
[41]
Pei, L.Z.; Wei, T.; Lin, N.; Cai, Z.Y.; Fan, C.G.; Yang, Z. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. J. Electrochem. Soc., 2016, 163(2), H1-H8.
[http://dx.doi.org/10.1149/2.0041602jes]
[42]
Cao, Y.; Lou, C.; Fang, Y.; Ye, J. Determination of active ingredients of Rhododendron dauricum L. by capillary electrophoresis with electrochemical detection. J. Chromatogr. A, 2002, 943(1), 153-157.
[http://dx.doi.org/10.1016/S0021-9673(01)01434-0] [PMID: 11820277]
[43]
Saad, B.; Bari, M.F.; Saleh, M.I.; Ahmad, K.; Talib, M.K.M. Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography. J. Chromatogr. A, 2005, 1073(1-2), 393-397.
[http://dx.doi.org/10.1016/j.chroma.2004.10.105] [PMID: 15909546]
[44]
Pei, L.Z.; Cai, Z.Y.; Xie, Y.K.; Fu, D.G.; Fan, C.G.; Fu, D.G. Electrochemical behaviors of benzoic acid at polyaniline/CuGeO3 nanowire modified glassy carbon electrode. Measurement, 2014, 53, 62-70.
[http://dx.doi.org/10.1016/j.measurement.2014.03.032]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy