Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

GC-MS/MS Analysis and Wound Repair Potential of Urtica dioica Essential Oil: In silico Modeling and In vivo Study in Rats

In Press, (this is not the final "Version of Record"). Available online 05 July, 2024
Author(s): Ahlem Ben Chira*, Yassine Kadmi*, Riadh Badraoui, Kaïss Aouadi, Fahad Alhawday, Mariem Boudaya, Kamel Jamoussi, Choumous Kallel, Abdelfattah El Feki, Adel Kadri and Mongi Saoudi*
Published on: 05 July, 2024

DOI: 10.2174/0113892010304346240619061848

Price: $95

Abstract

Background: The study aimed to assess the antioxidant and wound healing properties of Urtica dioica essential oil (UDEO) through a comprehensive evaluation involving in silico, in vitro, and in vivo analyses. The phytochemistry of UDEO was also investigated to identify trace compounds crucial.

Methods: Various injection methods of the multimode inlet (MMI) in chromatography were investigated to attain lower instrumental detection limits. Subsequently, in silico studies were employed to delve deeper into the potential biological activities of the identified compounds. Standard antioxidative tests, encompassing ABTS•+ and TAC, were performed. In vivo tests centered on wound healing were implemented using rat models. The rats were randomly allocated to four groups: saline solution, vaseline vehicle, cytol centella, and 5% UDEO ointment. Wound healing progress was evaluated through a chromatic study.

Results: Gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) analysis revealed the presence of 97 thermolabile compounds in UDEO. Subsequent in silico studies unveiled the potential of identified compounds to inhibit COX-2, TNF-α, and IL-6, suggesting a possible enhancement of anti-inflammatory responses and healing processes. In vitro tests elucidated the notable antioxidant capacity of UDEO, a finding reinforced by wound healing data, revealing a substantial closure rate of 89% following the topical application of UDEO. Notably, fibrinogen and C-reactive protein (CRP) levels were significantly reduced, indicating minimized oxidative stress damage compared to control. Additionally, UDEO exhibited an increase in antioxidant enzyme activities compared to control.

Conclusion: The study concludes that UDEO possesses significant antioxidant and wound-healing properties, supported by its rich phytochemical composition. The findings suggest its potential application in therapeutic interventions for oxidative stress and inflammatory conditions.


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy