Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Multitarget Compounds for Neglected Diseases: A Review

Author(s): Natália Ferreira de Sousa, Gabriela Ribeiro de Sousa, Natanael Teles Ramos de Lima, Edileuza Bezerra de Assis, Mariana Costa Aragão, Érika Paiva de Moura, Rajiv Gandhi Gopalsamy, Marcus Tullius Scotti and Luciana Scotti*

Volume 25, Issue 9, 2024

Published on: 04 July, 2024

Page: [577 - 601] Pages: 25

DOI: 10.2174/0113894501298864240627060247

Price: $65

Abstract

Neglected diseases are a group of infectious diseases, many of them parasitic, that mainly affect the poorest populations with limited access to health services, especially those living in remote rural areas and slums. According to the World Health Organization (WHO), neglected diseases put the lives of more than 200 million people at risk, and treatment is made difficult by the occurrence of resistance to existing medications, as well as the high level of toxicity. In this way, the potential of multitarget compounds is highlighted, defined as compounds designed to modulate multiple targets of relevance to disease, with the overall goal of enhancing efficacy and/or improving safety. Thus, the objective of our study is to evaluate existing multitarget compound approaches for neglected diseases, with an emphasis on Leishmaniasis, Chagas Disease, and Arboviruses. A literature review was performed by searching the database “Web of Sciences”. In relation to the diseases covered in this work, Leishmaniasis, individually, was the one that presented the largest number of articles (11) that dealt with the topic, which can be justified by the high prevalence of this disease in the world, the second most common disease was Dengue, followed by Chagas disease, Chikungunya virus, and Zika virus. Furthermore, the multitarget potential of phenolic compounds was observed in all diseases under study, with the mechanisms related to the nucleus and transcription being the most reported mechanisms. From this perspective, it is worth highlighting the effectiveness of approaches related to multitarget drugs in discovering new therapeutic agents for neglected diseases.

Graphical Abstract

[1]
Hotez PJ. Forgotten People, Forgotten Diseases: The Neglected Tropical Diseases and Their Impact on Global Health and Development. John Wiley & Sons 2021.
[http://dx.doi.org/10.1002/9781683673903]
[2]
Joshi G, Quadir SS, Yadav KS. Road map to the treatment of neglected tropical diseases: Nanocarriers interventions. J Control Release 2021; 339: 51-74.
[http://dx.doi.org/10.1016/j.jconrel.2021.09.020] [PMID: 34555491]
[3]
Ponte-Sucre A, Gamarro F, Dujardin JC, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017; 11(12): e0006052.
[http://dx.doi.org/10.1371/journal.pntd.0006052] [PMID: 29240765]
[4]
Lange C, Chesov D, Heyckendorf J, Leung CC, Udwadia Z, Dheda K. Drug‐resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology 2018; 23(7): 656-73.
[http://dx.doi.org/10.1111/resp.13304] [PMID: 29641838]
[5]
Suman DS, Chandel K, Faraji A, Gaugler R, Chandra K. Mosquitoborne diseases: Prevention is the cure for dengue, chikungunya and zika viruses. In: Mosquito-borne Dis Implic Public Heal. 2018; pp. 235-79.
[http://dx.doi.org/10.1007/978-3-319-94075-5_11]
[6]
Brady OJ, Hay SI. The global expansion of dengue: How Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu Rev Entomol 2020; 65(1): 191-208.
[http://dx.doi.org/10.1146/annurev-ento-011019-024918 ] [PMID: 31594415]
[7]
Mercier A, Obadia T, Carraretto D, et al. Impact of temperature on dengue and chikungunya transmission by the mosquito Aedes albopictus. Sci Rep 2022; 12(1): 6973.
[http://dx.doi.org/10.1038/s41598-022-10977-4] [PMID: 35484193]
[8]
Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect Dis 2017; 17(3): e101-6.
[http://dx.doi.org/10.1016/S1473-3099(16)30518-7 ] [PMID: 28011234]
[9]
Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Primers 2016; 2(1): 16055.
[http://dx.doi.org/10.1038/nrdp.2016.55] [PMID: 27534439]
[10]
Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, chikungunya, and other emerging vector borne viral diseases. Annu Rev Med 2018; 69(1): 395-408.
[http://dx.doi.org/10.1146/annurev-med-050715-105122 ] [PMID: 28846489]
[11]
Dehghani R, Kassiri H. A review on epidemiology of dengue viral infection as an emerging disease. Res J Pharm Technol 2021; 14: 2296-301.
[http://dx.doi.org/10.52711/0974-360X.2021.00406]
[12]
Paixão ES, Teixeira MG, Rodrigues LC. Zika, chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health 2018; 3 (Suppl. 1): e000530.
[http://dx.doi.org/10.1136/bmjgh-2017-000530] [PMID: 29435366]
[13]
Patterson J, Sammon M, Garg M. Dengue, zika and chikungunya: Emerging arboviruses in the new world. West J Emerg Med 2016; 17(6): 671-9.
[http://dx.doi.org/10.5811/westjem.2016.9.30904] [PMID: 27833670]
[14]
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15(1): 287.
[http://dx.doi.org/10.1186/s13071-022-05401-9] [PMID: 35945559]
[15]
Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current efforts in the development of vaccines for the prevention of zika and chikungunya virus infections. Front Immunol 2020; 11: 592.
[http://dx.doi.org/10.3389/fimmu.2020.00592] [PMID: 32373111]
[16]
Grifferty G, Shirley H, McGloin J, Kahn J, Orriols A, Wamai R. Vulnerabilities to and the socioeconomic and psychosocial impacts of the leishmaniases: A review. Res Rep Trop Med 2021; 12: 135-51.
[http://dx.doi.org/10.2147/RRTM.S278138] [PMID: 34188584]
[17]
Anversa L, Tiburcio MGS, Richini-Pereira VB, Ramirez LE. Human leishmaniasis in Brazil: A general review. Rev Assoc Med Bras 2018; 64(3): 281-9.
[http://dx.doi.org/10.1590/1806-9282.64.03.281] [PMID: 29641786]
[18]
Dias JCP. Chagas Disease (American Trypanosomiasis). Arthropod borne Dis 2017; 245-75.
[19]
López-Vélez R, Norman FF, Bern C. American Trypanosomiasis (Chagas Disease).Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier 2020; pp. 762-75.
[http://dx.doi.org/10.1016/B978-0-323-55512-8.00103-4]
[20]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[21]
Jamil M, Aleem MT, Shaukat A, et al. Medicinal plants as an alternative to control poultry parasitic diseases. Life 2022; 12(3): 449.
[http://dx.doi.org/10.3390/life12030449] [PMID: 35330200]
[22]
Singh N. Current trends in parasitic diseases and precautionary measures. Parasit Infect Immune Responses Ther 2023; pp. 356-81.
[http://dx.doi.org/10.1002/9781119878063.ch15]
[23]
Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta, Gen Subj 2013; 1830(6): 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[24]
Bermudez J, Davies C, Simonazzi A, Pablo Real J, Palma S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop 2016; 156: 1-16.
[http://dx.doi.org/10.1016/j.actatropica.2015.12.017 ] [PMID: 26747009]
[25]
Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BPD, Nakamura CV. Recent advances in leishmaniasis treatment. Int J Infect Dis 2011; 15(8): e525-32.
[http://dx.doi.org/10.1016/j.ijid.2011.03.021] [PMID: 21605997]
[26]
Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006; 27(1): 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[27]
David B, Wolfender JL, Dias DA. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem Rev 2015; 14(2): 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[28]
Kumar S, Saini R, Suthar P, Kumar V, Sharma R. Plant secondary metabolites: Their food and therapeutic importance.Plant Secondary Metabolites: Physico-Chemical Properties and Therapeutic Applications. Springer 2022; pp. 371-413.
[http://dx.doi.org/10.1007/978-981-16-4779-6_12]
[29]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001 ] [PMID: 26281720]
[30]
Saxena M, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of medicinal plants. J Pharmacogn Phytochem 2013; 1: 168-82.
[31]
Moreau RA, Nyström L, Whitaker BD, et al. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70: 35-61.
[http://dx.doi.org/10.1016/j.plipres.2018.04.001] [PMID: 29627611]
[32]
Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev 2014; 66(1): 334-95.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[33]
Proschak E, Stark H, Merk D. Polypharmacology by design: A medicinal chemist’s perspective on multitargeting compounds. J Med Chem 2019; 62(2): 420-44.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00760 ] [PMID: 30035545]
[34]
Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML. A perspective on multi‐target drug discovery and design for complex diseases. Clin Transl Med 2018; 7(1): e3.
[http://dx.doi.org/10.1186/s40169-017-0181-2] [PMID: 29340951]
[35]
Kabir A, Muth A. Polypharmacology: The science of multitargeting molecules. Pharmacol Res 2022; 176: 106055.
[http://dx.doi.org/10.1016/j.phrs.2021.106055] [PMID: 34990865]
[36]
Singh S, Prajapati VK. Exploring actinomycetes natural products to identify potential multi-target inhibitors against leishmania donovani. 3 Biotech 2022; 12: 235.
[37]
Peixoto JF, Oliveira AS, Monteiro PQ, et al. In Silico insights into the mechanism of action of epoxy-α-lapachone and epoxymethyl-lawsone in Leishmania spp. Molecules 2021; 26(12): 3537.
[http://dx.doi.org/10.3390/molecules26123537] [PMID: 34200517]
[38]
Lorenzo V, Lúcio A, Scotti L, et al. Structure and ligand-based approaches to evaluate aporphynic alkaloids from annonaceae as multi-target agent against Leishmania donovani. Curr Pharm Des 2016; 22(34): 5196-203.
[http://dx.doi.org/10.2174/1381612822666160513144853] [PMID: 27174814]
[39]
Houël E, Ginouves M, Azas N, et al. Treating leishmaniasis in Amazonia, part 2: Multi-target evaluation of widely used plants to understand medicinal practices. J Ethnopharmacol 2022; 289: 115054.
[http://dx.doi.org/10.1016/j.jep.2022.115054] [PMID: 35131338]
[40]
Garcia-Sosa AT. Designing ligands for leishmania, plasmodium, and aspergillus n-myristoyl transferase with specificity and anti-target-safe virtual libraries. Curr Computeraided Drug Des 2018; 14(2): 131-41.
[http://dx.doi.org/10.2174/1573409914666180308163231 ] [PMID: 29521245]
[41]
San Nicolás-Hernández D, Hernández-Álvarez E, Bethencourt-Estrella CJ, et al. Multi-target withaferin-A analogues as promising anti-kinetoplastid agents through the programmed cell death. Biomed Pharmacother 2023; 164: 114879.
[http://dx.doi.org/10.1016/j.biopha.2023.114879] [PMID: 37210899]
[42]
Camargo PG, Bortoleti BTS, Fabris M, et al. Thiohydantoins as anti-leishmanial agents: n vitro biological evaluation and multitarget investigation by molecular docking studies. J Biomol Struct Dyn 2022; 40(7): 3213-22.
[http://dx.doi.org/10.1080/07391102.2020.1845979 ] [PMID: 33183184]
[43]
Miguel DC, Yokoyama-Yasunaka JKU, Andreoli WK, Mortara RA, Uliana SRB. Tamoxifen is effective against Leishmania and induces a rapid alkalinization of parasitophorous vacuoles harbouring Leishmania (Leishmania) amazonensis amastigotes. J Antimicrob Chemother 2007; 60(3): 526-34.
[http://dx.doi.org/10.1093/jac/dkm219] [PMID: 17584801]
[44]
Miguel DC, Yokoyama-Yasunaka JKU, Uliana SRB. Tamoxifen is effective in the treatment of Leishmania amazonensis infections in mice. PLoS Negl Trop Dis 2008; 2(6): e249.
[http://dx.doi.org/10.1371/journal.pntd.0000249] [PMID: 18545685]
[45]
Miguel DC, Zauli-Nascimento RC, Yokoyama-Yasunaka JKU, Katz S, Barbiéri CL, Uliana SRB. Tamoxifen as a potential antileishmanial agent: efficacy in the treatment of Leishmania braziliensis and Leishmania chagasi infections. J Antimicrob Chemother 2008; 63(2): 365-8.
[http://dx.doi.org/10.1093/jac/dkn509] [PMID: 19095684]
[46]
Coelho AC, Trinconi CT, Senra L, Yokoyama-Yasunaka JKU, Uliana SRB. Leishmania is not prone to develop resistance to tamoxifen. Int J Parasitol Drugs Drug Resist 2015; 5(3): 77-83.
[http://dx.doi.org/10.1016/j.ijpddr.2015.05.006] [PMID: 26150922]
[47]
Katchborian-Neto A, Santos MFC, Vilas-Boas DF, et al. Immunological modulation and control of parasitaemia by ayahuasca compounds: Therapeutic potential for chagas’s disease. Chem Biodivers 2022; 19(10): e202200409.
[http://dx.doi.org/10.1002/cbdv.202200409] [PMID: 36163588]
[48]
Uliassi E, Fiorani G, Krauth-Siegel RL, et al. Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (Tb GAPDH) and Trypanosoma cruzi trypanothione reductase (Tc TR) and display trypanocidal activity. Eur J Med Chem 2017; 141: 138-48.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.005] [PMID: 29031061]
[49]
Reigada C, Valera-Vera EA, Sayé M, et al. Trypanocidal effect of isotretinoin through the inhibition of polyamine and amino acid transporters in trypanosoma cruzi. PLoS Negl Trop Dis 2017; 11(3): e0005472.
[http://dx.doi.org/10.1371/journal.pntd.0005472] [PMID: 28306713]
[50]
Vieira GAL, Silva MTA, Regasini LO, et al. Trypanosoma cruzi: analysis of two different strains after piplartine treatment. Braz J Infect Dis 2018; 22(3): 208-18.
[http://dx.doi.org/10.1016/j.bjid.2018.02.009] [PMID: 29879424]
[51]
Ticona JC, Bilbao-Ramos P, Flores N, et al. (E)-Piplartine Isolated from Piper pseudoarboreum, a Lead Compound against Leishmaniasis. Foods 2020; 9(9): 1250.
[http://dx.doi.org/10.3390/foods9091250] [PMID: 32906719]
[52]
Filho CSMB, de Menezes RRPPB, Magalhães EP, Castillo YP, Martins AMC, de Sousa DP. Piplartine-inspired 3,4,5-trimethoxycinnamates: Trypanocidal, mechanism of action, and in silico evaluation. Molecules 2023; 28(11): 4512.
[http://dx.doi.org/10.3390/molecules28114512] [PMID: 37298988]
[53]
Pereira PML, Camargo PG, Fernandes BT, et al. In vitro evaluation of antitrypanosomal activity and molecular docking of benzoylthioureas. Parasitol Int 2021; 80: 102225.
[http://dx.doi.org/10.1016/j.parint.2020.102225] [PMID: 33160050]
[54]
Demoro B, Rossi M, Caruso F, et al. Potential mechanism of the anti-trypanosomal activity of organoruthenium complexes with bioactive thiosemicarbazones. Biol Trace Elem Res 2013; 153(1-3): 371-81.
[http://dx.doi.org/10.1007/s12011-013-9653-4] [PMID: 23564472]
[55]
Laura Bolognesi M. Multi-target-directed ligands as innovative tools to combat trypanosomatid diseases. Curr Top Med Chem 2011; 11(22): 2824-33.
[http://dx.doi.org/10.2174/156802611798184391] [PMID: 22039880]
[56]
Pawar R, Patravale V. A step towards treating dengue viral infection: An In Silico approach to identify potential antidengue phytoconstituents. ChemistrySelect 2020; 5(44): 13837-54.
[http://dx.doi.org/10.1002/slct.202004137]
[57]
de Souza LM, Venturini FP, Inada NM, et al. Curcumin in formulations against Aedes aegypti: Mode of action, photolarvicidal and ovicidal activity. Photodiagn Photodyn Ther 2020; 31: 101840.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101840] [PMID: 32485405]
[58]
Mahajan P, Tomar S, Kumar A, Yadav N, Arya A, Dwivedi VD. A multi-target approach for discovery of antiviral compounds against dengue virus from green tea. In: Netw Model Anal Heal Informatics Bioinforma. 2020; p. 9.
[59]
Fakhri S, Mohammadi Pour P, Piri S, Farzaei MH, Echeverría J. Modulating neurological complications of emerging infectious diseases: Mechanistic approaches to candidate phytochemicals. Front Pharmacol 2021; 12: 742146.
[http://dx.doi.org/10.3389/fphar.2021.742146] [PMID: 34764869]
[60]
de Oliveira AC, Sá ISC, Mesquita RS, et al. Nanoemulsion loaded with volatile oil from piper alatipetiolatum as an alternative agent in the control of aedes aegypti. Rev Bras Farmacogn 2020; 30(5): 667-77.
[http://dx.doi.org/10.1007/s43450-020-00092-8]
[61]
de Lima Menezes G, Vogel Saivish M, Lacerda Nogueira M, Alves da Silva R. Virtual screening of small natural compounds against NS1 protein of DENV, YFV and ZIKV. J Biomol Struct Dyn 2023; 41(7): 2981-91.
[http://dx.doi.org/10.1080/07391102.2022.2042390 ] [PMID: 35188085]
[62]
Araújo MO, Pérez-Castillo Y, Oliveira LHG, Nunes FC, Sousa DP. Larvicidal activity of cinnamic acid derivatives: Investigating alternative products for Aedes aegypti L. Control Molecules 2020; 26(1): 61.
[http://dx.doi.org/10.3390/molecules26010061] [PMID: 33374484]
[63]
Zou M, Li JY, Zhang MJ, et al. G-quadruplex binder pyridostatin as an effective multi-target ZIKV inhibitor. Int J Biol Macromol 2021; 190: 178-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.121 ] [PMID: 34461156]
[64]
Scuotto M, Abdelnabi R, Collarile S, et al. Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorg Med Chem 2017; 25(1): 327-37.
[http://dx.doi.org/10.1016/j.bmc.2016.10.037] [PMID: 27856239]
[65]
Yang C, Xie W, Zhang H, Xie W, Tian T, Qin Z. Recent two-year advances in anti-dengue small-molecule inhibitors. Eur J Med Chem 2022; 243: 114753.
[http://dx.doi.org/10.1016/j.ejmech.2022.114753] [PMID: 36167010]
[66]
Vicenti I, Martina MG, Boccuto A, et al. System-oriented optimization of multi-target 2,6-diaminopurine derivatives: Easily accessible broad-spectrum antivirals active against flaviviruses, influenza virus and SARS-CoV-2. Eur J Med Chem 2021; 224: 113683.
[http://dx.doi.org/10.1016/j.ejmech.2021.113683] [PMID: 34273661]
[67]
Alshaikh MA, Elnahary EK, Elaiw AM. Stability of a secondary dengue viral infection model with multi-target cells. Alex Eng J 2022; 61(9): 7075-87.
[http://dx.doi.org/10.1016/j.aej.2021.12.050]
[68]
García I, Fall Y, Gómez G. Using topological indices to predict anti-Alzheimer and anti-parasitic GSK-3 inhibitors by multi-target QSAR in silico screening. Molecules 2010; 15(8): 5408-22.
[http://dx.doi.org/10.3390/molecules15085408] [PMID: 20714305]
[69]
González-Díaz H, Romaris F, Duardo-Sanchez A, et al. Predicting drugs and proteins in parasite infections with topological indices of complex networks: theoretical backgrounds, applications, and legal issues. Curr Pharm Des 2010; 16(24): 2737-64.
[http://dx.doi.org/10.2174/138161210792389234] [PMID: 20642428]
[70]
Cavalli A, Bolognesi ML. Neglected tropical diseases: Multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J Med Chem 2009; 52(23): 7339-59.
[http://dx.doi.org/10.1021/jm9004835] [PMID: 19606868]
[71]
Scotti L, Filho FJ, de Moura RO, et al. Multi-target drugs for neglected diseases. Curr Pharm Des 2016; 22(21): 3135-63.
[http://dx.doi.org/10.2174/1381612822666160224142552] [PMID: 26907943]
[72]
Braga SS. Multi-target drugs active against leishmaniasis: A paradigm of drug repurposing. Eur J Med Chem 2019; 183: 111660.
[http://dx.doi.org/10.1016/j.ejmech.2019.111660] [PMID: 31514064]
[73]
Kushwaha V, Capalash N. Aminoacyl-tRNA synthetase (AARS) as an attractive drug target in neglected tropical trypanosomatid diseases-leishmaniasis, human african trypanosomiasis and chagas disease. Mol Biochem Parasitol 2022; 251: 111510.
[http://dx.doi.org/10.1016/j.molbiopara.2022.111510 ] [PMID: 35988745]
[74]
Olin-Sandoval V, González-Chávez Z, Berzunza-Cruz M, et al. Drug target validation of the trypanothione pathway enzymes through metabolic modelling. FEBS J 2012; 279(10): 1811-33.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08557.x ] [PMID: 22394478]
[75]
He L, Sun W, Yang L, Liu W, Li J. A multiple-target mRNA-LNP vaccine induces protective immunity against experimental multiserotype DENV in mice. Virol Sin 2022; 37(5): 746-57.
[http://dx.doi.org/10.1016/j.virs.2022.07.003] [PMID: 35835315]
[76]
Sánchez-Tejeda JF, Sánchez-Ruiz JF, Salazar JR, Loza-Mejía MA. A definition of “multitargeticity”: Identifying potential multitarget and selective ligands through a vector analysis. Front Chem 2020; 8: 176.
[http://dx.doi.org/10.3389/fchem.2020.00176] [PMID: 32232029]
[77]
Zhou J, Jiang X, He S, et al. Rational design of multitarget-directed ligands: Strategies and emerging paradigms. J Med Chem 2019; 62(20): 8881-914.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00017 ] [PMID: 31082225]
[78]
Lamens A, Bajorath J. Explaining accurate predictions of multitarget compounds with machine learning models derived for individual targets. Molecules 2023; 28(2): 825.
[http://dx.doi.org/10.3390/molecules28020825] [PMID: 36677879]
[79]
Hu Y, Bajorath J. Compound promiscuity: What can we learn from current data? Drug Discov Today 2013; 18(13-14): 644-50.
[http://dx.doi.org/10.1016/j.drudis.2013.03.002] [PMID: 23524195]
[80]
Feldmann C, Miljković F, Yonchev D, Bajorath J. Identifying promiscuous compounds with activity against different target classes. Molecules 2019; 24(22): 4185.
[http://dx.doi.org/10.3390/molecules24224185] [PMID: 31752252]
[81]
Bolognesi ML. Polypharmacology in a single drug: Multitarget drugs. Curr Med Chem 2013; 20(13): 1639-45.
[http://dx.doi.org/10.2174/0929867311320130004 ] [PMID: 23410164]
[82]
Viana JO, Félix MB, Maia MS, Serafim VL, Scotti L, Scotti MT. Drug discovery and computational strategies in the multitarget drugs era. Braz J Pharm Sci 2018; 54(spe): 54.
[http://dx.doi.org/10.1590/s2175-97902018000001010]
[83]
Watts C. Neglected tropical diseases: A DFID perspective. PLoS Negl Trop Dis 2017; 11(4): e0005492.
[http://dx.doi.org/10.1371/journal.pntd.0005492] [PMID: 28426666]
[84]
Organization, WH World Health Organization (WHO) COVID-19 Dashboard World Heal Organ 2023. Available from: https://data.who.int/dashboards/covid19/cases?n=c
[85]
Sevá AP, Mao L, Galvis-Ovallos F, Oliveira KMM, Oliveira FBS, Albuquerque GR. Spatio-temporal distribution and contributing factors of tegumentary and visceral leishmaniasis: A comparative study in Bahia, Brazil. Spat Spatio-Temporal Epidemiol 2023; 47: 100615.
[http://dx.doi.org/10.1016/j.sste.2023.100615] [PMID: 38042540]
[86]
Salazar PB, Fanzone M, Zabala BA, et al. A byproduct from the valles calchaquíes vineyards (Argentina) rich in phenolic compounds: A tool against endemic Leishmania dissemination. Environ Sci Pollut Res Int 2023; 30(43): 97377-85.
[http://dx.doi.org/10.1007/s11356-023-29276-0] [PMID: 37592068]
[87]
Abdul Naeem M, Aamir M, Ijaz F, Amin N, Khurram Aftab R. Detection of asymptomatic Leishmania donovani in healthy voluntary blood donors. Transfus Clin Biol 2023; 30(2): 228-31.
[http://dx.doi.org/10.1016/j.tracli.2023.01.001] [PMID: 36634863]
[88]
Yimer M, Nibret E, Yismaw G. Updates on prevalence and trend status of visceral leishmaniasis at two health facilities in amhara regional state, northwest ethiopia: A retrospective study. Biochem Res Int 2022; 2022: 3603892.
[89]
Murray HW. Kala-azar progress against a neglected disease. N Engl J Med 2002; 347(22): 1793-4.
[http://dx.doi.org/10.1056/NEJMe020133] [PMID: 12456856]
[90]
Alvar J, Vélez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012; 7(5): e35671.
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[91]
Frearson JA, Brand S, McElroy SP, et al. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 2010; 464(7289): 728-32.
[http://dx.doi.org/10.1038/nature08893] [PMID: 20360736]
[92]
Glisic S, Sencanski M, Perovic V, Stevanovic S, García-Sosa A. Arginase flavonoid anti-leishmanial in silico inhibitors flagged against anti-targets. Molecules 2016; 21(5): 589.
[http://dx.doi.org/10.3390/molecules21050589] [PMID: 27164067]
[93]
Coro-Bermello J, López-Rodríguez ER, Alfonso-Ramos JE, et al. Identification of novel thiadiazin derivatives as potentially selective inhibitors towards trypanothione reductase from Trypanosoma cruzi by molecular docking using the numerical index poses ratio Pr and the binding mode analysis. SN Appl Sci 2021; 3(3): 376.
[http://dx.doi.org/10.1007/s42452-021-04375-0]
[94]
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016; 95: 27-42.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.02.028 ] [PMID: 26923386]
[95]
Karplus PA, Schulz GE. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: Substrate crystal structures at 2Å resolution. J Mol Biol 1989; 210(1): 163-80.
[http://dx.doi.org/10.1016/0022-2836(89)90298-2] [PMID: 2585516]
[96]
Martinez F, Massuh Y, Aguilar JJ, et al. Cultivars of Tagetes minuta L. (Asteraceae) as a source of potential natural products with antiviral activity. J Herb Med 2020; 24: 100397.
[http://dx.doi.org/10.1016/j.hermed.2020.100397]
[97]
Silvério MRS, Espindola LS, Lopes NP, Vieira PC. Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules 2020; 25(15): 3484.
[http://dx.doi.org/10.3390/molecules25153484] [PMID: 32751878]
[98]
Beicht J, Kubinski M, Zdora I, et al. Induction of humoral and cell-mediated immunity to the NS1 protein of TBEV with recombinant Influenza virus and MVA affords partial protection against lethal TBEV infection in mice. Front Immunol 2023; 14: 1177324.
[http://dx.doi.org/10.3389/fimmu.2023.1177324] [PMID: 37483628]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy