Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications

Author(s): Harish Bhardwaj, Sulekha Khute, Ram Kumar Sahu and Rajendra Kumar Jangde*

Volume 25, Issue 4, 2024

Published on: 24 June, 2024

Page: [248 - 265] Pages: 18

DOI: 10.2174/0113892002291778240610073122

Price: $65

Abstract

Modern nanostructures must fulfill a wide range of functions to be valuable, leading to the combination of various nano-objects into hierarchical assemblies. Hybrid Nanoparticles (HNPs), comprised of multiple types of nanoparticles, are emerging as nanoscale structures with versatile applications. HNPs offer enhanced medical benefits compared to basic combinations of distinct components. They address the limitations of traditional nanoparticle delivery systems, such as poor water solubility, nonspecific targeting, and suboptimal therapeutic outcomes. HNPs also facilitate the transition from anatomical to molecular imaging in lung cancer diagnosis, ensuring precision. In clinical settings, the selection of nanoplatforms with superior reproducibility, cost-effectiveness, easy preparation, and advanced functional and structural characteristics is para-mount. This study aims toextensively examine hybrid nanoparticles, focusing on their classification, drug delivery mechanisms, properties of hybrid inorganic nanoparticles, advancements in hybrid nanoparticle technology, and their biomedical applications, particularly emphasizing the utilization of smart hybrid nanoparticles. PHNPs enable the delivery of numerous anticancer, anti-leishmanial, and antifungal drugs, enhancing cellular absorption, bioavailability, and targeted drug delivery while reducing toxic side effects.

[1]
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid nanosystems for biomedical applications. ACS Nano 2021; 15(2): 2099-142.
[http://dx.doi.org/10.1021/acsnano.0c09382] [PMID: 33497197]
[2]
Ran X, Huang Y, Wang M. A hybrid Monte Carlo-discrete ordinates method for phonon transport in micro/nanosystems with rough interfaces. Int J Heat Mass Trans 2023; 201(2): 123624.
[3]
Hamdan MF, Mohd Noor SN, Abd-Aziz N, Pua TL, Tan BC. Green revolution to gene revolution: Technological advances in agriculture to feed the world. Plants 2022; 11(10): 1297.
[http://dx.doi.org/10.3390/plants11101297] [PMID: 35631721]
[4]
Hueckel T, Luo X, Aly OF, Macfarlane RJ. Nanoparticle brushes: Macromolecular ligands for materials synthesis. Acc Chem Res 2023; 56(14): 1931-41.
[http://dx.doi.org/10.1021/acs.accounts.3c00160] [PMID: 37390490]
[5]
Moulahoum H, Ghorbanizamani F, Beduk T, et al. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. J Pharm Biomed Anal 2023; 235: 115623.
[http://dx.doi.org/10.1016/j.jpba.2023.115623] [PMID: 37542827]
[6]
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260(Pt 2): 129391.
[http://dx.doi.org/10.1016/j.ijbiomac.2024.129391] [PMID: 38242413]
[7]
Khan J. Optical chemosensors synthesis and appplication for trace level metal ions detection in aqueous media: A review. J Fluoresc 2024; 4.
[http://dx.doi.org/10.1007/s10895-023-03559-8] [PMID: 38175458]
[8]
Jain S, Kumar M, Kumar P, et al. Lipid–Polymer hybrid nanosystems: A rational fusion for advanced therapeutic delivery. J Funct Biomater 2023; 14(9): 437.
[http://dx.doi.org/10.3390/jfb14090437] [PMID: 37754852]
[9]
Scopel R, Falcão MA, Cappellari AR, et al. Lipid-polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment. Int J Polym Mater 2022; 71(2): 127-38.
[http://dx.doi.org/10.1080/00914037.2020.1809406]
[10]
Kashapov R, Ibragimova A, Pavlov R, et al. Nanocarriers for biomedicine: From lipid formulations to inorganic and hybrid nanoparticles. Int J Mol Sci 2021; 22(13): 7055.
[http://dx.doi.org/10.3390/ijms22137055] [PMID: 34209023]
[11]
Elmowafy M, Shalaby K, Elkomy MH, et al. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers (Basel) 2023; 15(5): 1123.
[http://dx.doi.org/10.3390/polym15051123] [PMID: 36904364]
[12]
Deljoo S, Rabiee N, Rabiee M. Curcumin-hybrid nanoparticles in drug delivery system. Asian J of Nanosci and Mat 2019; 2(1): 66-91.
[13]
Qi X, Xiang Y, Cai E, et al. Inorganic–organic hybrid nanomaterials for photothermal antibacterial therapy. Coord Chem Rev 2023; 496: 215426.
[http://dx.doi.org/10.1016/j.ccr.2023.215426]
[14]
Pushpalatha C, Sowmya SV, Augustine D, et al. Nanoparticle as an effective tool for the diagnosis of diseases and vaccinology. Nanovaccinology 2023.
[http://dx.doi.org/10.1007/978-3-031-35395-6_15]
[15]
Chu YM, Nazir U, Sohail M, Selim M, Lee JR. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal and Fractional 2021; 5(3): 119.
[http://dx.doi.org/10.3390/fractalfract5030119]
[16]
Zhao Z, Wang X, Jing X, et al. General synthesis of ultrafine monodispersed hybrid nanoparticles from highly stable monomicelles. Adv Mater 2021; 33(23): 2100820.
[http://dx.doi.org/10.1002/adma.202100820] [PMID: 33914372]
[17]
Liu R, Luo C, Pang Z, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett 2023; 34(2): 107518.
[http://dx.doi.org/10.1016/j.cclet.2022.05.032]
[18]
Salehi S, Nori A, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of MHD squeezing mixture fluid suspended by hybrid nanoparticles between two parallel plates. Case Stud Therm Eng 2020; 21: 100650.
[http://dx.doi.org/10.1016/j.csite.2020.100650]
[19]
Sekar R, Basavegowda N, Thathapudi JJ, et al. Recent progress of gold-based nanostructures towards future emblem of photo-triggered cancer theranostics: A special focus on combinatorial phototherapies. Pharmaceutics 2023; 15(2): 433.
[http://dx.doi.org/10.3390/pharmaceutics15020433] [PMID: 36839754]
[20]
Xu Y, Dong X, Xu H, Jiao P, Zhao LX, Su G. Nanomaterial-based drug delivery systems for pain treatment and relief: From the delivery of a single drug to co-delivery of multiple therapeutics. Pharmaceutics 2023; 15(9): 2309.
[http://dx.doi.org/10.3390/pharmaceutics15092309] [PMID: 37765278]
[21]
Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7: 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[22]
Shetty K, Bhandari A, Yadav KS. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J Control Release 2022; 350: 421-34.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.035] [PMID: 36002053]
[23]
Wang H, Yang S, Chen L, et al. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33: 174-222.
[http://dx.doi.org/10.1016/j.bioactmat.2023.10.004] [PMID: 38034499]
[24]
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213: 166-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.156] [PMID: 35644315]
[25]
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: Exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21(2): 245-78.
[http://dx.doi.org/10.1080/17425247.2024.2318459] [PMID: 38344771]
[26]
Sivadasan D, Sultan MH, Madkhali O, Almoshari Y, Thangavel N. Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging drug delivery platform—a comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics 2021; 13(8): 1291.
[http://dx.doi.org/10.3390/pharmaceutics13081291] [PMID: 34452251]
[27]
Surapaneni SG, Ambade AV. Poly(N -vinylcaprolactam) containing solid lipid polymer hybrid nanoparticles for controlled delivery of a hydrophilic drug gemcitabine hydrochloride. RSC Advances 2022; 12(27): 17621-8.
[http://dx.doi.org/10.1039/D2RA02845J] [PMID: 35765442]
[28]
Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomedicine 2021; 16: 185-99.
[http://dx.doi.org/10.2147/IJN.S286221] [PMID: 33447034]
[29]
Bhattacharya S. Methotrexate-loaded polymeric lipid hybrid nanoparticles (PLHNPs): A reliable drug delivery system for the treatment of glioblastoma. J Exp Nanosci 2021; 16(1): 344-67.
[http://dx.doi.org/10.1080/17458080.2021.1983172]
[30]
Rouco H, García-García P, Évora C, Díaz-Rodríguez P, Delgado A. Screening strategies for surface modification of lipid-polymer hybrid nanoparticles. Int J Pharm 2022; 624: 121973.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121973] [PMID: 35811041]
[31]
Hossain N, Mobarak MH, Mimona MA, et al. Advances and significances of nanoparticles in semiconductor applications – A review. Results in Engineering 2023; 19: 101347.
[http://dx.doi.org/10.1016/j.rineng.2023.101347]
[32]
Mohanty A, Uthaman S, Park IK. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules 2020; 25(19): 4377.
[http://dx.doi.org/10.3390/molecules25194377] [PMID: 32977707]
[33]
Amin P, Shojaei A, Hamzehlouyan T. ZIF-8/Chitosan hybrid nanoparticles with tunable morphologies as superior adsorbents towards both anionic and cationic dyes for a broad range of acidic and basic environments. Microporous Mesoporous Mater 2022; 343: 112149.
[http://dx.doi.org/10.1016/j.micromeso.2022.112149]
[34]
Setia A, Sahu RK, Ray S, Widyowati R, Ekasari W, Saraf S. Advances in hybrid vesicular-based drug delivery systems: Improved biocompatibility, targeting, therapeutic efficacy and pharmacokinetics of anticancer drugs. Curr Drug Metab 2022; 23(9): 757-80.
[http://dx.doi.org/10.2174/1389200223666220627110049] [PMID: 35761494]
[35]
Sailor MJ, Park JH. Hybrid nanoparticles for detection and treatment of cancer. Adv Mater 2012; 24(28): 3779-802.
[http://dx.doi.org/10.1002/adma.201200653] [PMID: 22610698]
[36]
Wang J, Gong J, Wei Z. Strategies for liposome drug delivery systems to improve tumor treatment efficacy. AAPS PharmSciTech 2022; 23(1): 27.
[http://dx.doi.org/10.1208/s12249-021-02179-4] [PMID: 34907483]
[37]
Dehaini D, Fang RH, Luk BT, et al. Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale 2016; 8(30): 14411-9.
[http://dx.doi.org/10.1039/C6NR04091H] [PMID: 27411852]
[38]
Danhier F, Danhier P, De Saedeleer CJ, et al. Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors. Int J Pharm 2015; 479(2): 399-407.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.009] [PMID: 25578367]
[39]
Zhang T, Luo J, Fu Y, et al. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer. Colloids Surf B Biointerfaces 2017; 150: 89-97.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.024] [PMID: 27898360]
[40]
Yalcin TE, Ilbasmis-Tamer S, Takka S. Antitumor activity of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs): In vitro and in vivo. Int J Pharm 2020; 580: 119246.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119246] [PMID: 32205141]
[41]
Khan MM, Madni A, Torchilin V, et al. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv 2019; 26(1): 765-72.
[http://dx.doi.org/10.1080/10717544.2019.1642420] [PMID: 31357896]
[42]
Tahir N, Madni A, Balasubramanian V, et al. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm 2017; 533(1): 156-68.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.061] [PMID: 28963013]
[43]
Yousaf R, Khan MI, Akhtar MF, et al. Development and in-vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole. Heliyon 2023; 9(3): e14281.
[http://dx.doi.org/10.1016/j.heliyon.2023.e14281] [PMID: 36925532]
[44]
Awadeen RH, Boughdady MF, Zaghloul RA, Elsaed WM, Abu Hashim II, Meshali MM. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis. Sci Rep 2023; 13(1): 19110.
[http://dx.doi.org/10.1038/s41598-023-46215-8] [PMID: 37925581]
[45]
Kamaraj S, Palanisamy UM, Kadhar Mohamed MSB, Gangasalam A, Maria GA, Kandasamy R. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur J Pharm Sci 2018; 116: 48-60.
[http://dx.doi.org/10.1016/j.ejps.2018.01.023] [PMID: 29355595]
[46]
Manjusha V, Rajeev MR, Anirudhan TS. Magnetic nanoparticle embedded chitosan-based polymeric network for the hydrophobic drug delivery of paclitaxel. Int J Biol Macromol 2023; 235: 123900.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123900] [PMID: 36870643]
[47]
Olusegun SJ, Osial M, Majkowska-Pilip A, et al. Synthesis and characterization of Sr2+ and Gd3+ doped magnetite nanoparticles for magnetic hyperthermia and drug delivery application. Ceram Int 2023; 49(12): 19851-60.
[http://dx.doi.org/10.1016/j.ceramint.2023.03.102]
[48]
Hajebi S, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Hybrid and hollow Poly(N,N-dimethylaminoethyl methacrylate) nanogels as stimuli-responsive carriers for controlled release of doxorubicin. Polymer (Guildf) 2019; 180: 121716.
[http://dx.doi.org/10.1016/j.polymer.2019.121716]
[49]
Khalid Q, Ahmad M, Usman Minhas M. Hydroxypropyl‐β‐cyclodextrin hybrid nanogels as nano‐drug delivery carriers to enhance the solubility of dexibuprofen: Characterization, in vitro release, and acute oral toxicity studies. Adv Polym Technol 2018; 37(6): 2171-85.
[http://dx.doi.org/10.1002/adv.21876]
[50]
Rahman S, Haque TN, Sugandhi VV, Saraswat AL, Xin X, Cho H. Topical cream carrying drug-loaded nanogels for melanoma treatment. Pharm Res 2023; 40(10): 2291-301.
[http://dx.doi.org/10.1007/s11095-023-03506-z] [PMID: 37012533]
[51]
Rezaei SJT, Sarijloo E, Rashidzadeh H, et al. pH-triggered prodrug micelles for cisplatin delivery: Preparation and in vitro/vivo evaluation. React Funct Polym 2020; 146: 104399.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104399]
[52]
Bauer TA, Schramm J, Fenaroli F, et al. Complex structures made simple – continuous flow production of core cross‐linked polymeric micelles for paclitaxel pro‐drug‐delivery. Adv Mater 2023; 35(21): 2210704.
[http://dx.doi.org/10.1002/adma.202210704] [PMID: 36934295]
[53]
Somavarapu S, Sornsute A, Trill J, et al. Engineering artesunate-loaded micelles using spray drying for pulmonary drug delivery. J Drug Deliv Sci Technol 2023; 86: 104641.
[http://dx.doi.org/10.1016/j.jddst.2023.104641]
[54]
Zhu J, Wang G, Alves CS, et al. Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging. Langmuir 2018; 34(41): 12428-35.
[http://dx.doi.org/10.1021/acs.langmuir.8b02901] [PMID: 30251859]
[55]
Fatani WK, Aleanizy FS, Alqahtani FY, et al. Erlotinib-loaded dendrimer nanocomposites as a targeted lung cancer chemotherapy. Molecules 2023; 28(9): 3974.
[http://dx.doi.org/10.3390/molecules28093974] [PMID: 37175381]
[56]
Ding Q, Ding C, Liu X, et al. Preparation of nanocomposite membranes loaded with taxifolin liposome and its mechanism of wound healing in diabetic mice. Int J Biol Macromol 2023; 241: 124537.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124537] [PMID: 37086765]
[57]
Hasanbegloo K, Banihashem S, Faraji Dizaji B, et al. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly(ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer. Int J Biol Macromol 2023; 230: 123380.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123380] [PMID: 36706885]
[58]
Lu W, Liu W, Hu A, Shen J, Yi H, Cheng Z. Combinatorial polydopamine-liposome nanoformulation as an effective anti-breast cancer therapy. Int J Nanomedicine 2023; 18: 861-79.
[http://dx.doi.org/10.2147/IJN.S382109] [PMID: 36844433]
[59]
Alsadooni JFK, Haghi M, Barzegar A, Feizi MAH. The effect of chitosan hydrogel containing gold nanoparticle complex with paclitaxel on colon cancer cell line. Int J Biol Macromol 2023; 247: 125612.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125612] [PMID: 37390995]
[60]
Shahidi M, Abazari O, Dayati P, et al. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment. Nanotechnol Rev 2022; 11(1): 2875-90.
[http://dx.doi.org/10.1515/ntrev-2022-0479]
[61]
Shakiba M, Jahangiri P, Rahmani E, et al. Drug-loaded carbon nanotube incorporated in nanofibers: A multifunctional nanocomposite for smart chronic wound healing. ACS Appl Polym Mater 2023; 5(7): 5662-75.
[http://dx.doi.org/10.1021/acsapm.3c00965]
[62]
Nguyen T, Maniyar A, Sarkar M, Sarkar TR, Neelgund GM. The cytotoxicity of carbon nanotubes and hydroxyapatite, and graphene and hydroxyapatite nanocomposites against breast cancer cells. Nanomaterials (Basel) 2023; 13(3): 556.
[http://dx.doi.org/10.3390/nano13030556] [PMID: 36770518]
[63]
Shu G, Xu D, Xie S, et al. The antioxidant, antibacterial, and infected wound healing effects of ZnO quantum dots-chitosan biocomposite. Appl Surf Sci 2023; 611: 155727.
[http://dx.doi.org/10.1016/j.apsusc.2022.155727]
[64]
Wang Z, Zhu J, Chen L, Deng K, Huang H. Multifunctional gold–silver–carbon quantum dots nano-hybrid composite: Advancing antibacterial wound healing and cell proliferation. ACS Appl Mater Interfaces 2023; 15(34): 40241-54.
[http://dx.doi.org/10.1021/acsami.3c07625] [PMID: 37599603]
[65]
Gómez IJ, Ovejero-Paredes K, Méndez-Arriaga JM, et al. Organotin(IV)‐decorated graphene quantum dots as dual platform for molecular imaging and treatment of triple negative breast cancer. Chemistry 2023; 29(60): e202301845.
[http://dx.doi.org/10.1002/chem.202301845] [PMID: 37540499]
[66]
Sainaga Jyothi VGS, Bulusu R, Venkata Krishna Rao B, et al. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int J Pharm 2022; 624: 122022.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122022] [PMID: 35843364]
[67]
Castro KC, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: A review. Int J Polym Mater 2022; 71(1): 1-13.
[http://dx.doi.org/10.1080/00914037.2020.1798436]
[68]
Vallorz EL, Encinas-Basurto D, Schnellmann RG, Mansour HM. Design, development, physicochemical characterization, and in vitro drug release of formoterol PEGylated PLGA polymeric nanoparticles. Pharmaceutics 2022; 14(3): 638.
[http://dx.doi.org/10.3390/pharmaceutics14030638] [PMID: 35336011]
[69]
Zhang H, He Z, Fu C, et al. Dissociation of polymeric micelle under hemodynamic shearing. Nano Today 2022; 45: 101517.
[http://dx.doi.org/10.1016/j.nantod.2022.101517]
[70]
Gandhi NS, Tekade RK, Chougule MB. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. J Control Release 2014; 194: 238-56.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.001] [PMID: 25204288]
[71]
Du M, Ouyang Y, Meng F, et al. Nanotargeted agents: An emerging therapeutic strategy for breast cancer. Nanomedicine (Lond) 2019; 14(13): 1771-86.
[http://dx.doi.org/10.2217/nnm-2018-0481] [PMID: 31298065]
[72]
Zhang X, Li F, Zhao X. Treatment of surfactants with concentrations below critical micelle concentration by ultrafiltration: A mini-review. Water Cycle 2022; 3: 50-5.
[http://dx.doi.org/10.1016/j.watcyc.2022.04.002]
[73]
Miri V, Jangde RK, Singh D, Suresh PK. Lipid-polymer hybrid nanoparticles for topical drug delivery system. J Drug Deliv Ther 2023; 13(4): 113-20.
[http://dx.doi.org/10.22270/jddt.v13i4.5789]
[74]
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30(6): 577-88.
[http://dx.doi.org/10.1080/1061186X.2022.2044485] [PMID: 35179094]
[75]
Cruse K, Trewartha A, Lee S, et al. Text-mined dataset of gold nanoparticle synthesis procedures, morphologies, and size entities. Sci Data 2022; 9(1): 234.
[http://dx.doi.org/10.1038/s41597-022-01321-6] [PMID: 35618761]
[76]
Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci 2016; 81: 162-71.
[http://dx.doi.org/10.1016/j.ejps.2015.10.021] [PMID: 26517962]
[77]
Mat Isa SZ, Zainon R, Tamal M. State of the art in gold nanoparticle synthesisation via pulsed laser ablation in liquid and its characterisation for molecular imaging: A review. Materials (Basel) 2022; 15(3): 875.
[http://dx.doi.org/10.3390/ma15030875] [PMID: 35160822]
[78]
Ramezani M, Dehghani A, Sherif MM. Carbon nanotube reinforced cementitious composites: A comprehensive review. Constr Build Mater 2022; 315: 125100.
[http://dx.doi.org/10.1016/j.conbuildmat.2021.125100]
[79]
Sridharan R, Monisha B, Kumar PS, Gayathri KV. Carbon nanomaterials and its applications in pharmaceuticals: A brief review. Chemosphere 2022; 294: 133731.
[http://dx.doi.org/10.1016/j.chemosphere.2022.133731] [PMID: 35090848]
[80]
Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[81]
Simões MG, Hugo A, Alves P, Pérez PF, Gómez-Zavaglia A, Simões PN. Long term stability and interaction with epithelial cells of freeze-dried pH-responsive liposomes functionalized with cholesterol-poly(acrylic acid). Colloids Surf B Biointerfaces 2018; 164: 50-7.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.018] [PMID: 29413620]
[82]
Fan L, Wei A, Gao Z, Mu X. Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy. Biomed Pharmacother 2023; 161: 114451.
[http://dx.doi.org/10.1016/j.biopha.2023.114451] [PMID: 36870279]
[83]
Chen H, Pina JM, Hou Y, Sargent EH. Synthesis, applications, and prospects of quantum‐dot‐in‐perovskite solids. Adv Energy Mater 2022; 12(4): 2100774.
[http://dx.doi.org/10.1002/aenm.202100774]
[84]
Bangera PD, Kara DD, Tanvi K, Tippavajhala VK, Rathnanand M. Highlights on cell-penetrating peptides and polymer-lipid hybrid nanoparticle: Overview and therapeutic applications for targeted anticancer therapy. AAPS PharmSciTech 2023; 24(5): 124.
[http://dx.doi.org/10.1208/s12249-023-02576-x] [PMID: 37225901]
[85]
Chen BZ, He YT, Zhao ZQ, et al. Strategies to develop polymeric microneedles for controlled drug release. Adv Drug Deliv Rev 2023; 203: 115109.
[http://dx.doi.org/10.1016/j.addr.2023.115109]
[86]
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202: 115111.
[http://dx.doi.org/10.1016/j.addr.2023.115111] [PMID: 37820982]
[87]
Iravani S, Varma RS. Smart MXene quantum dot-based nanosystems for biomedical applications. Nanomaterials (Basel) 2022; 12(7): 1200.
[http://dx.doi.org/10.3390/nano12071200] [PMID: 35407317]
[88]
Ismail J, Klepsch LC, Dahlke P, et al. PEG–Lipid–PLGA hybrid particles for targeted delivery of anti-inflammatory drugs. Pharmaceutics 2024; 16(2): 187.
[http://dx.doi.org/10.3390/pharmaceutics16020187] [PMID: 38399248]
[89]
Oluwasanmi A, Man E, Curtis A, Yiu HHP, Perrie Y, Hoskins C. Investigation into the use of microfluidics in the manufacture of metallic gold-coated iron oxide hybrid nanoparticles. Nanomaterials (Basel) 2021; 11(11): 2976.
[http://dx.doi.org/10.3390/nano11112976] [PMID: 34835738]
[90]
Su H, Han X, He L, et al. Synthesis and characterization of magnetic dextran nanogel doped with iron oxide nanoparticles as magnetic resonance imaging probe. Int J Biol Macromol 2019; 128: 768-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.219] [PMID: 30716377]
[91]
Myeni N, Perla VK, Ghosh SK, Mallick K. Organic matrix stabilized copper sulfide nanoparticles: Synthesis, characterization and application in glucose recognition. Mater Today Commun 2020; 25: 101291.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101291]
[92]
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int J Nanomedicine 2019; 14: 1937-52.
[http://dx.doi.org/10.2147/IJN.S198353] [PMID: 30936695]
[93]
Dali P, Shende P. Self-assembled lipid polymer hybrid nanoparticles using combinational drugs for migraine via intranasal route. AAPS PharmSciTech 2022; 24(1): 20.
[http://dx.doi.org/10.1208/s12249-022-02479-3] [PMID: 36526821]
[94]
Ren Y. Selenized polymer-lipid hybrid nanoparticles for oral delivery of tripterine with ameliorative oral anti-enteritis activity and bioavailability. Pharmaceut 2023; 15(3): 821.
[http://dx.doi.org/10.3390/pharmaceutics15030821] [PMID: 36986681]
[95]
Tan CH, Jiang L, Li W, et al. Lipid-polymer hybrid nanoparticles enhance the potency of ampicillin against] Enterococcus faecalis in a protozoa infection model. ACS Infect Dis 2021; 7(6): 1607-18.
[http://dx.doi.org/10.1021/acsinfecdis.0c00774] [PMID: 33866781]
[96]
Rizwanullah M, Perwez A, Alam M, et al. Polymer-lipid hybrid nanoparticles of exemestane for improved oral bioavailability and anti-tumor efficacy: An extensive preclinical investigation. Int J Pharm 2023; 642: 123136.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123136] [PMID: 37311498]
[97]
Abo El-Enin HA, Tulbah AS, Darwish HW, et al. Evaluation of brain targeting and antipsychotic activity of nasally administrated ziprasidone lipid–polymer hybrid nanocarriers. Pharmaceuticals (Basel) 2023; 16(6): 886.
[http://dx.doi.org/10.3390/ph16060886] [PMID: 37375832]
[98]
Yuan H, Liu B, Liu F, et al. Enhanced anti-rheumatoid arthritis activity of total alkaloids from picrasma quassioides in collagen-induced arthritis rats by a targeted drug delivery system. J Pharm Sci 2023; 112(9): 2483-93.
[http://dx.doi.org/10.1016/j.xphs.2023.03.024] [PMID: 37023852]
[99]
Pradyuth KS, Salunkhe SA, Singh AK, Chitkara D, Mittal A. Belinostat loaded lipid–polymer hybrid nanoparticulate delivery system for breast cancer: Improved pharmacokinetics and biodistribution in a tumor model. J Mater Chem B Mater Biol Med 2023; 11(45): 10859-72.
[http://dx.doi.org/10.1039/D3TB01317K] [PMID: 37938124]
[100]
Munir A, Muhammad F, Zaheer Y, et al. Synthesis of naringenin loaded lipid based nanocarriers and their in-vivo therapeutic potential in a rheumatoid arthritis model. J Drug Deliv Sci Technol 2021; 66: 102854.
[http://dx.doi.org/10.1016/j.jddst.2021.102854]
[101]
Jadon RS, Sharma G, Garg NK, et al. Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy. Colloids Surf B Biointerfaces 2021; 203: 111760.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111760] [PMID: 33872827]
[102]
Sanjanwala D, Patravale V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discov Today 2023; 28(5): 103550.
[http://dx.doi.org/10.1016/j.drudis.2023.103550] [PMID: 36906220]
[103]
Lv J, Roy S, Xie M, Yang X, Guo B. Contrast agents of magnetic resonance imaging and future perspective. Nanomaterials (Basel) 2023; 13(13): 2003.
[http://dx.doi.org/10.3390/nano13132003] [PMID: 37446520]
[104]
Bhardwaj H, Jangde RK. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnology 2023; 2: 100013.
[http://dx.doi.org/10.1016/j.nxnano.2023.100013]
[105]
Huang L, Huang XH, Yang X, et al. Novel nano-drug delivery system for natural products and their application. Pharmacol Res 2024; 201: 107100.
[http://dx.doi.org/10.1016/j.phrs.2024.107100] [PMID: 38341055]
[106]
Jangde R, Elhassan GO, Khute S, et al. Hesperidin-loaded lipid polymer hybrid nanoparticles for topical delivery of bioactive drugs. Pharmaceuticals (Basel) 2022; 15(2): 211.
[http://dx.doi.org/10.3390/ph15020211] [PMID: 35215324]
[107]
Shin HE, Han JH, Park JD, et al. Enhancing CAR‐NK cells against solid tumors through chemical and genetic fortification with DOTAP‐functionalized lipid nanoparticles. Adv Funct Mater 2024; 7: 2315721.
[http://dx.doi.org/10.1002/adfm.202315721]
[108]
Bhardwaj H, Khute S, Sahu R, Jangde RK. Advanced drug delivery system for management of chronic diabetes wound healing. Curr Drug Targets 2023; 24(16): 1239-59.
[http://dx.doi.org/10.2174/0113894501260002231101080505] [PMID: 37957907]
[109]
Iqbal MF, Yang Y, Hassan MU, et al. Polyaniline grafted mesoporous zinc sulfide nanoparticles for hydrogen evolution reaction. Int J Hydrogen Energy 2022; 47(9): 6067-77.
[http://dx.doi.org/10.1016/j.ijhydene.2021.11.255]
[110]
Sankar R, Rizwana K, Shivashangari KS, Ravikumar V. Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl Nanosci 2015; 5(6): 731-6.
[http://dx.doi.org/10.1007/s13204-014-0369-3]
[111]
Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int J Mol Sci 2018; 19(10): 3264.
[http://dx.doi.org/10.3390/ijms19103264] [PMID: 30347840]
[112]
Shetty A, Chandra S. Inorganic hybrid nanoparticles in cancer theranostics: Understanding their combinations for better clinical translation. Mater Today Chem 2020; 18: 100381.
[http://dx.doi.org/10.1016/j.mtchem.2020.100381]
[113]
Tiwari A, Dhoble SJ. Stabilization of ZnS nanoparticles by polymeric matrices: Synthesis, optical properties and recent applications. RSC Advances 2016; 6(69): 64400-20.
[http://dx.doi.org/10.1039/C6RA13108E]
[114]
Eo K, Kim M, Ihm H, Jeong S, Kwon YK. Preparation and surface plasmon resonance of polymer/silver hybrid nanoparticles. Porrime 2018; 42(1): 93-8.
[http://dx.doi.org/10.7317/pk.2018.42.1.93]
[115]
Wang H, Yuan Y, Qin L, et al. Tunable rigidity of PLGA shell-lipid core nanoparticles for enhanced pulmonary siRNA delivery in 2D and 3D lung cancer cell models. J Control Release 2024; 366: 746-60.
[116]
Zhou CQ, Han J, Guo R. Controllable synthesis and catalysis application of conducting polymer/noble metal nanoparticle hybrids. Acta Poly Sinica 2020; 51(5): 517-29.
[117]
Suvarli N, Frentzel M, Hubbuch J, Perner-Nochta I, Wörner M. Synthesis of spherical nanoparticle hybrids via aerosol thiol-ene photopolymerization and their bioconjugation. Nanomaterials (Basel) 2022; 12(3): 577.
[http://dx.doi.org/10.3390/nano12030577] [PMID: 35159922]
[118]
Mujahid MH, Upadhyay TK, Khan F, et al. Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 2022; 155: 113791.
[http://dx.doi.org/10.1016/j.biopha.2022.113791] [PMID: 36271568]
[119]
Charipar K, Kim H, Piqué A, Charipar N. ZnO nanoparticle/graphene hybrid photodetectors via laser fragmentation in liquid. Nanomaterials (Basel) 2020; 10(9): 1648.
[http://dx.doi.org/10.3390/nano10091648] [PMID: 32825778]
[120]
Majumdar R, Tantayanon S. In-situ synthesis of metal nanoparticle embedded soft hybrid materials via eco-benign approach. Pure and Appl Chem 2022; 94(8): 10.
[121]
Wang C, Chen S, Bao L, Liu X, Hu F, Yuan H. Size-controlled preparation and behavior study of phospholipid–calcium carbonate hybrid nanoparticles. Int J Nanomedicine 2020; 15: 4049-62.
[http://dx.doi.org/10.2147/IJN.S237156] [PMID: 32606663]
[122]
Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018; 2018: 1-18.
[123]
Esmaeili MS, Varzi Z, Taheri-Ledari R, Maleki A. Preparation and study of the catalytic application in the synthesis of xanthenedione pharmaceuticals of a hybrid nano-system based on copper, zinc and iron nanoparticles. Res Chem Intermed 2021; 47(3): 973-96.
[http://dx.doi.org/10.1007/s11164-020-04311-8]
[124]
Andreani T, Dias-Ferreira J, Fangueiro JF, et al. Formulating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection. Heliyon 2020; 6(5): e03831.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03831] [PMID: 32395645]
[125]
Fadia P, Tyagi S, Bhagat S, et al. Calcium carbonate nano- and microparticles: Synthesis methods and biological applications. 3 Biotech 2021; 11(11): 457.
[http://dx.doi.org/10.1007/s13205-021-02995-2]
[126]
Hu Y, Qiu C, Jin Z, et al. Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydr Polym 2020; 229: 115418.
[http://dx.doi.org/10.1016/j.carbpol.2019.115418] [PMID: 31826463]
[127]
Huang Y, Li P, Zhao R, et al. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother 2022; 151: 113053.
[http://dx.doi.org/10.1016/j.biopha.2022.113053] [PMID: 35594717]
[128]
Khan MM, Madni A, Filipczak N, et al. Folate targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy. Nanomedicine 2020; 28: 102228.
[http://dx.doi.org/10.1016/j.nano.2020.102228] [PMID: 32485321]
[129]
Mutlu-Agardan NB, Han S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm Dev Technol 2021; 26(2): 157-66.
[http://dx.doi.org/10.1080/10837450.2020.1849282] [PMID: 33183103]
[130]
Yang H, Le QV, Shim G, Oh YK, Shin YK. Molecular engineering of antibodies for site-specific conjugation to lipid polydopamine hybrid nanoparticles. Acta Pharm Sin B 2020; 10(11): 2212-26.
[http://dx.doi.org/10.1016/j.apsb.2020.07.006] [PMID: 33304787]
[131]
Silva LB, Castro KADF, Botteon CEA, Oliveira CLP, da Silva RS, Marcato PD. Hybrid nanoparticles as an efficient porphyrin delivery system for cancer cells to enhance photodynamic therapy. Front Bioeng Biotechnol 2021; 9: 679128.
[http://dx.doi.org/10.3389/fbioe.2021.679128] [PMID: 34604182]
[132]
Jangde RK. Rabsanjani; Khute, S. Design and development of ciprofloxacin lipid polymer hybrid nanoparticle by response surface methodology. Res J Pharm Technol 2020; 13(7): 3249-56.
[http://dx.doi.org/10.5958/0974-360X.2020.00576.4]
[133]
Alfagih IM, Kaneko K, Kunda NK, et al. In vitro characterization of inhalable cationic hybrid nanoparticles as potential vaccine carriers. Pharmaceuticals (Basel) 2021; 14(2): 164.
[http://dx.doi.org/10.3390/ph14020164] [PMID: 33670611]
[134]
Jiao X, Yu X, Gong C, et al. Erythrocyte-cancer hybrid membrane-camouflaged Mesoporous silica nanoparticles loaded with gboxin for glioma-targeting therapy. Curr Pharm Biotechnol 2022; 23(6): 835-46.
[http://dx.doi.org/10.2174/1389201022666210719164538] [PMID: 34825635]
[135]
Surendran V, Palei NN, Vanangamudi M, Madheswaragupta P. Systemic optimization and validation of RP-HPLC method for the estimation of ritonavir from hybrid polymeric nanoparticles in rat plasma. Curr Pharm Anal 2022; 18(6): 650-62.
[http://dx.doi.org/10.2174/1573412918666220128092959]
[136]
Qin L, Wu H, Xu E, et al. Exploring the potential of functional polymer-lipid hybrid nanoparticles for enhanced oral delivery of paclitaxel. Asian J Pharmaceut Sci 2021; 16(3): 387-95.
[http://dx.doi.org/10.1016/j.ajps.2021.02.004] [PMID: 34276826]
[137]
Kalaycioglu GD, Aydogan N. Fluorocarbon/hydrocarbon hybrid surfactant decorated gold nanoparticles and their interaction with model cell membranes. J Mol Liq 2021; 326: 115346.
[http://dx.doi.org/10.1016/j.molliq.2021.115346]
[138]
Esteban-Pérez S, Andrés-Guerrero V, López-Cano JJ, Molina-Martínez I, Herrero-Vanrell R, Bravo-Osuna I. Gelatin nanoparticles-HPMC hybrid system for effective ocular topical administration of antihypertensive agents. Pharmaceutics 2020; 12(4): 306.
[http://dx.doi.org/10.3390/pharmaceutics12040306] [PMID: 32231033]
[139]
Shi W, Cao X, Liu Q, et al. Hybrid membrane-derived nanoparticles for isoliquiritin enhanced glioma therapy. Pharmaceuticals (Basel) 2022; 15(9): 1059.
[http://dx.doi.org/10.3390/ph15091059] [PMID: 36145280]
[140]
Niu B, Zhou Y, Liao K, et al. “Pincer movement”: Reversing cisplatin resistance based on simultaneous glutathione depletion and glutathione S-transferases inhibition by redox-responsive degradable organosilica hybrid nanoparticles. Acta Pharm Sin B 2022; 12(4): 2074-88.
[http://dx.doi.org/10.1016/j.apsb.2021.10.013] [PMID: 35847508]
[141]
Godara S, Lather V, Kirthanashri SV, Awasthi R, Pandita D. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Mater Sci Eng C 2020; 109: 110576.
[http://dx.doi.org/10.1016/j.msec.2019.110576] [PMID: 32228957]
[142]
Bogireddy NKR, Sahare P, Pal U, Méndez SFO, Gomez LM, Agarwal V. Platinum nanoparticle-assembled porous biogenic silica 3D hybrid structures with outstanding 4-nitrophenol degradation performance. Chem Eng J 2020; 388: 124237.
[http://dx.doi.org/10.1016/j.cej.2020.124237]
[143]
Zhang K, Li J, Xin X, et al. Dual targeting of cancer cells and MMPs with self-assembly hybrid nanoparticles for combination therapy in combating cancer. Pharmaceutics 2021; 13(12): 1990.
[http://dx.doi.org/10.3390/pharmaceutics13121990] [PMID: 34959271]
[144]
Fu W, Liang Y, Xie Z, Wu H, Zhang Z, Lv H. Preparation and evaluation of lecithin/zein hybrid nanoparticles for the oral delivery of Panax notoginseng saponins. Eur J Pharm Sci 2021; 164: 105882.
[http://dx.doi.org/10.1016/j.ejps.2021.105882] [PMID: 34000426]
[145]
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022; 460: 214482.
[http://dx.doi.org/10.1016/j.ccr.2022.214482]
[146]
Yameen MA, Zeb A, Mustafa RE, et al. Synthesis and biological evaluation of amoxicillin loaded hybrid material composite spheres against methicillin-resistant Staphylococcus aureus. Curr Pharm Biotechnol 2021; 22(5): 686-96.
[http://dx.doi.org/10.2174/1389201021666201221143537] [PMID: 33349214]
[147]
Piras CC, Mahon CS, Genever PG, Smith DK. Shaping and patterning supramolecular materials—stem cell-compatible dual-network hybrid gels loaded with silver nanoparticles. ACS Biomater Sci Eng 2022; 8(5): 1829-40.
[http://dx.doi.org/10.1021/acsbiomaterials.1c01560] [PMID: 35364810]
[148]
Hong W, Gao Y, Lou B, et al. Curcumin-loaded hybrid nanoparticles: Microchannel-based preparation and antitumor activity in a mouse model. Int J Nanomedicine 2021; 16: 4147-59.
[http://dx.doi.org/10.2147/IJN.S303829] [PMID: 34168445]
[149]
Asfour MH, Salama AAA, Mohsen AM. Fabrication of all-trans retinoic acid loaded chitosan/tripolyphosphate lipid hybrid nanoparticles as a novel oral delivery approach for management of diabetic nephropathy in rats. J Pharm Sci 2021; 110(9): 3208-20.
[http://dx.doi.org/10.1016/j.xphs.2021.05.007] [PMID: 34015278]
[150]
Ribeiro LNM, Rodrigues da Silva GH, Couto VM, et al. Functional hybrid nanoemulsions for sumatriptan intranasal delivery. Front Chem 2020; 8: 589503.
[http://dx.doi.org/10.3389/fchem.2020.589503] [PMID: 33282832]
[151]
Karthikeyan C, Sisubalan N, Varaprasad K, Aepuru R, Yallapu MM, Viswanathan MR. Umaralikhan; Sadiku, R. Hybrid nanoparticles from chitosan and nickel for enhanced biocidal activities. New J Chem 2022; 46(27): 13240-8.
[http://dx.doi.org/10.1039/D2NJ02009B]
[152]
Karimi B, Ma’mani L, Amin AA, Karimi H, Hossini H. Ionic liquid modified magnetic nanoparticles-graphene hybrid (Fe3O4@GO-IL) for the removal of ibuprofen and penicillin G from aqueous solutions. Desalination Water Treat 2020; 208: 355-66.
[http://dx.doi.org/10.5004/dwt.2020.26473]
[153]
Elzayat A, Tolba E, Pérez-Pla FF, Oraby A, Muñoz-Espí R. Increased stability of polysaccharide/silica hybrid sub‐millicarriers for retarded release of hydrophilic substances. Macromol Chem Phys 2021; 222(9): 2100027.
[http://dx.doi.org/10.1002/macp.202100027]
[154]
Lv L, Cheng H, Wang Z, et al. Carrier–drug layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy. Nanoscale 2022; 14(37): 13740-54.
[http://dx.doi.org/10.1039/D2NR03200G] [PMID: 36098072]
[155]
Correia DM, Fernandes LC, Fernandes MM, et al. Ionic liquid-based materials for biomedical applications. Nanomaterials (Basel) 2021; 11(9): 2401.
[http://dx.doi.org/10.3390/nano11092401] [PMID: 34578716]
[156]
Bonetti FMR, de Paula E, Fonseca BB, et al. Hybrid nanobeads for oral indomethacin delivery. Pharmaceutics 2022; 14(3): 583.
[http://dx.doi.org/10.3390/pharmaceutics14030583] [PMID: 35335959]
[157]
Yang T, Li XT, Tang CH. Novel edible pickering high-internal-phase-emulsion gels efficiently stabilized by unique polysaccharide-protein hybrid nanoparticles from Okara. Food Hydrocoll 2020; 98: 105285.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105285]
[158]
Barbosa RM, Leite AM, García-Villén F, et al. Hybrid lipid/clay carrier systems containing annatto oil for topical formulations. Pharmaceutics 2022; 14(5): 1067.
[http://dx.doi.org/10.3390/pharmaceutics14051067] [PMID: 35631653]
[159]
Siddique S, Chow JCL. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials (Basel) 2020; 10(9): 1700.
[http://dx.doi.org/10.3390/nano10091700] [PMID: 32872399]
[160]
Maddu N. Nanoparticle mediated diagnosis of clinical biomarkers of different diseases: Amedical application of nanotechnologyNanoparticles in Analytical and Medical Devices. Amsterdam: Elsevier 2021; pp. 155-73.
[161]
Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol 2014; 171(17): 3963-79.
[http://dx.doi.org/10.1111/bph.12604] [PMID: 24467481]
[162]
Gao Y, Wu Y. Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int J Biol Macromol 2022; 203: 379-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.162] [PMID: 35104473]
[163]
Huang Y, Zeng J. Recent development and applications of nanomaterials for cancer immunotherapy. Nanotechnol Rev 2020; 9(1): 367-84.
[http://dx.doi.org/10.1515/ntrev-2020-0027]
[164]
Mandal B, Bhattacharjee H, Mittal N, et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013; 9(4): 474-91.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[165]
Mukherjee B, Chakraborty S, Mondal L, et al. Multifunctional drug nanocarriers facilitate more specific entry of therapeutic payload into tumors and control multiple drug resistance in cancer.Nanobiomaterials in Cancer Therapy: Applications of Nanobiomaterials. Elsevier: Aamsterdam 2016; 7: pp. 203-51.
[http://dx.doi.org/10.1016/B978-0-323-42863-7.00007-4]
[166]
Nagpal K, Mohan A, Thakur S, Kumar P. Dendritic platforms for biomimicry and biotechnological applications. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 861-75.
[http://dx.doi.org/10.1080/21691401.2018.1438451] [PMID: 29447478]
[167]
Chen J, Tang Y, Liu Y, Dou Y. Nucleic acid-based therapeutics for pulmonary diseases. AAPS PharmSciTech 2018; 19(8): 3670-80.
[http://dx.doi.org/10.1208/s12249-018-1183-0] [PMID: 30338490]
[168]
Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules 2020; 25(12): 2866.
[http://dx.doi.org/10.3390/molecules25122866] [PMID: 32580326]
[169]
Zhang DX, Esser L, Vasani RB, Thissen H, Voelcker NH. Porous silicon nanomaterials: Recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine (Lond) 2019; 14(24): 3213-30.
[http://dx.doi.org/10.2217/nnm-2019-0167] [PMID: 31855121]
[170]
Park W, Shin H, Choi B, Rhim WK, Na K, Keun Han D. Advanced hybrid nanomaterials for biomedical applications. Prog Mater Sci 2020; 114: 100686.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100686]
[171]
Alves MM, Andrade SM, Grenho L, Fernandes MH, Santos C, Montemor MF. Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications. Mater Sci Eng C 2019; 101: 76-87.
[http://dx.doi.org/10.1016/j.msec.2019.03.084] [PMID: 31029366]
[172]
Bhardwaj H, Joshi R, Gupta A. Updated scenario on negative pressure wound therapy. Int J Low Extrem Wounds 2024; 7: 15347346241228788.
[http://dx.doi.org/10.1177/15347346241228788] [PMID: 38327069]
[173]
Nyabadza A, McCarthy É, Makhesana M, et al. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Adv Colloid Interface Sci 2023; 321: 103010.
[http://dx.doi.org/10.1016/j.cis.2023.103010] [PMID: 37804661]
[174]
Khute S, Jangde RK. In silico exploration of venlafaxine, a potential non-tricyclic antidepressant in a liposomal formulation for nose-to-brain drug delivery. Drug Dev Ind Pharm 2024; 50(1): 55-67.
[http://dx.doi.org/10.1080/03639045.2023.2297238] [PMID: 38112520]
[175]
Sohail M, Nazir U, Singh A, Tulu A, Khan MJ. Finite element analysis of cross fluid model over a vertical disk suspended to a tetra hybrid nanoparticles mixture. Sci Rep 2024; 14(1): 1520.
[http://dx.doi.org/10.1038/s41598-024-51262-w] [PMID: 38233448]
[176]
Wang C, Astruc D. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem Soc Rev 2021; 50(5): 3437-84.
[http://dx.doi.org/10.1039/D0CS00515K] [PMID: 33492311]
[177]
Sahoo J, Sarkhel S, Mukherjee N, Jaiswal A. Nanomaterial-based antimicrobial coating for biomedical implants: New age solution for biofilm-associated infections. ACS Omega 2022; 7(50): 45962-80.
[http://dx.doi.org/10.1021/acsomega.2c06211] [PMID: 36570317]
[178]
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical applications of TiO2 nanostructures: Recent advances. Int J Nanomedicine 2020; 15: 3447-70.
[http://dx.doi.org/10.2147/IJN.S249441] [PMID: 32523343]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy