Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Exploring the Role of Unconventional Post-Translational Modifications in Cancer Diagnostics and Therapy

Author(s): Sayan Sharma, Oindrila Sarkar and Rajgourab Ghosh*

Volume 25, Issue 10, 2024

Published on: 21 June, 2024

Page: [780 - 796] Pages: 17

DOI: 10.2174/0113892037274615240528113148

Price: $65

Abstract

Unconventional Post-Translational Modifications (PTMs) have gained increasing attention as crucial players in cancer development and progression. Understanding the role of unconventional PTMs in cancer has the potential to revolutionize cancer diagnosis, prognosis, and therapeutic interventions. These modifications, which include O-GlcNAcylation, glutathionylation, crotonylation, including hundreds of others, have been implicated in the dysregulation of critical cellular processes and signaling pathways in cancer cells. This review paper aims to provide a comprehensive analysis of unconventional PTMs in cancer as diagnostic markers and therapeutic targets. The paper includes reviewing the current knowledge on the functional significance of various conventional and unconventional PTMs in cancer biology. Furthermore, the paper highlights the advancements in analytical techniques, such as biochemical analyses, mass spectrometry and bioinformatic tools etc., that have enabled the detection and characterization of unconventional PTMs in cancer. These techniques have contributed to the identification of specific PTMs associated with cancer subtypes. The potential use of Unconventional PTMs as biomarkers will further help in better diagnosis and aid in discovering potent therapeutics. The knowledge about the role of Unconventional PTMs in a vast and rapidly expanding field will help in detection and targeted therapy of cancer.

[1]
American Cancer Society. In: Global Cancer Facts and Figures, 4th Edition; American Cancer Society.: Atlanta, 2018.
[2]
Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 2017, 4(4), 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[3]
National Cancer Institute.The Genetics of Cancer. 2022. Available from: https://www.cancer.gov/about-cancer/causes-prevention/genetics
[4]
Jensen, O.N. Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol., 2006, 7(6), 391-403.
[http://dx.doi.org/10.1038/nrm1939] [PMID: 16723975]
[5]
Srivastava, A.K.; Guadagnin, G.; Cappello, P.; Novelli, F. Post-translational modifications in tumor-associated antigens as a platform for novel immuno-oncology therapies. Cancers (Basel), 2022, 15(1), 138.
[http://dx.doi.org/10.3390/cancers15010138] [PMID: 36612133]
[6]
Lebert, J.; Lilly, E.J. Developments in the management of metastatic HER2-positive breast cancer: A review. Curr. Oncol., 2022, 29(4), 2539-2549.
[http://dx.doi.org/10.3390/curroncol29040208] [PMID: 35448182]
[7]
Zhao, D.; Klempner, S.J.; Chao, J. Progress and challenges in HER2-positive gastroesophageal adenocarcinoma. J. Hematol. Oncol., 2019, 12(1), 50.
[http://dx.doi.org/10.1186/s13045-019-0737-2] [PMID: 31101074]
[8]
Riudavets, M.; Sullivan, I.; Abdayem, P.; Planchard, D. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open, 2021, 6(5), 100260.
[http://dx.doi.org/10.1016/j.esmoop.2021.100260] [PMID: 34479034]
[9]
Morales, S.; Gasol, A.; Sanchez, D.R. Her2-positive cancers and antibody-based treatment: State of the art and future developments. Cancers (Basel), 2021, 13(22), 5771.
[http://dx.doi.org/10.3390/cancers13225771] [PMID: 34830927]
[10]
Xia, X.; Hu, T.; He, X.; Liu, Y.; Yu, C.; Kong, W.; Liao, Y.; Tang, D.; Liu, J.; Huang, H. Neddylation of HER2 inhibits its protein degradation and promotes breast cancer progression. Int. J. Biol. Sci., 2023, 19(2), 377-392.
[http://dx.doi.org/10.7150/ijbs.75852] [PMID: 36632463]
[11]
Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers, 2011, 3(1), 994-1013.
[http://dx.doi.org/10.3390/cancers3010994] [PMID: 24212651]
[12]
Lin, H.Y.; Shih, A.I.; Davis, F.B.; Tang, H.Y.; Martino, L.J.; Bennett, J.A.; Davis, P.J. Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. J. Urol., 2002, 168(2), 748-755.
[http://dx.doi.org/10.1016/S0022-5347(05)64739-8] [PMID: 12131363]
[13]
Li, X.; Niu, Z.; Sun, C.; Zhuo, S.; Yang, H.; Yang, X.; Liu, Y.; Yan, C.; Li, Z.; Cao, Q.; Ji, G.; Ding, Y.; Zhuang, T.; Zhu, J. Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187. Cell Death Dis., 2022, 13(2), 149.
[http://dx.doi.org/10.1038/s41419-022-04604-3] [PMID: 35165289]
[14]
Ferrer, C.M.; Lynch, T.P.; Sodi, V.L.; Falcone, J.N.; Schwab, L.P.; Peacock, D.L.; Vocadlo, D.J.; Seagroves, T.N.; Reginato, M.J. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell, 2014, 54(5), 820-831.
[http://dx.doi.org/10.1016/j.molcel.2014.04.026] [PMID: 24857547]
[15]
Brabletz, T.; Jung, A.; Dag, S.; Hlubek, F.; Kirchner, T. β-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am. J. Pathol., 1999, 155(4), 1033-1038.
[http://dx.doi.org/10.1016/S0002-9440(10)65204-2] [PMID: 10514384]
[16]
Birgisdottir, V.; Stefansson, O.A.; Bodvarsdottir, S.K.; Hilmarsdottir, H.; Jonasson, J.G.; Eyfjord, J.E. Epigenetic silencing and deletion of the BRCA1gene in sporadic breast cancer. Breast Cancer Res., 2006, 8(4), R38.
[http://dx.doi.org/10.1186/bcr1522] [PMID: 16846527]
[17]
Sette, G.; Salvati, V.; Mottolese, M.; Visca, P.; Gallo, E.; Fecchi, K.; Pilozzi, E.; Duranti, E.; Policicchio, E.; Tartaglia, M.; Milella, M.; De Maria, R.; Eramo, A. Tyr1068-phosphorylated epidermal growth factor receptor (EGFR) predicts cancer stem cell targeting by erlotinib in preclinical models of wild-type EGFR lung cancer. Cell Death Dis., 2015, 6(8), e1850-e1850.
[http://dx.doi.org/10.1038/cddis.2015.217] [PMID: 26247735]
[18]
Samaržija, I. Post-translational modifications that drive prostate cancer progression. Biomolecules, 2021, 11(2), 247.
[http://dx.doi.org/10.3390/biom11020247] [PMID: 33572160]
[19]
Zhang, H.; Han, W. Protein post-translational modifications in head and neck cancer. Front. Oncol., 2020, 10, 571944.
[http://dx.doi.org/10.3389/fonc.2020.571944] [PMID: 33117703]
[20]
Srivastava, S.; Kumar, S.; Bhatt, R.; Ramachandran, R.; Trivedi, A.K.; Kundu, T.K. Lysine acetyltransferases (KATs) in disguise: Diseases implications. J. Biochem., 2023, 173(6), 417-433.
[http://dx.doi.org/10.1093/jb/mvad022] [PMID: 36913740]
[21]
Van Dyke, M.W. Lysine deacetylase (KDAC) regulatory pathways: an alternative approach to selective modulation. ChemMedChem, 2014, 9(3), 511-522.
[http://dx.doi.org/10.1002/cmdc.201300444] [PMID: 24449617]
[22]
Han, D.; Huang, M.; Wang, T.; Li, Z.; Chen, Y.; Liu, C.; Lei, Z.; Chu, X. Lysine methylation of transcription factors in cancer. Cell Death Dis., 2019, 10(4), 290.
[http://dx.doi.org/10.1038/s41419-019-1524-2] [PMID: 30926778]
[23]
Srour, N.; Khan, S.; Richard, S. The influence of arginine methylation in immunity and inflammation. J. Inflamm. Res., 2022, 15, 2939-2958.
[http://dx.doi.org/10.2147/JIR.S364190] [PMID: 35602664]
[24]
Lv, Z.; Yuan, L.; Atkison, J.H.; Williams, K.M.; Vega, R.; Sessions, E.H.; Divlianska, D.B.; Davies, C.; Chen, Y.; Olsen, S.K. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat. Commun., 2018, 9(1), 5145.
[http://dx.doi.org/10.1038/s41467-018-07015-1] [PMID: 30514846]
[25]
Hart, G.W.; Housley, M.P.; Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature, 2007, 446(7139), 1017-1022.
[http://dx.doi.org/10.1038/nature05815] [PMID: 17460662]
[26]
Xiong, Y.; Manevich, Y.; Tew, K.D.; Townsend, D.M. S-glutathionylation of protein disulfide isomerase regulates estrogen receptor α stability and function. Int. J. Cell Biol., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/273549] [PMID: 22654912]
[27]
Enchev, R.I.; Schulman, B.A.; Peter, M. Protein neddylation: beyond cullin–RING ligases. Nat. Rev. Mol. Cell Biol., 2015, 16(1), 30-44.
[http://dx.doi.org/10.1038/nrm3919] [PMID: 25531226]
[28]
Mohanan, S.; Cherrington, B.D.; Horibata, S.; McElwee, J.L.; Thompson, P.R.; Coonrod, S.A. Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochem. Res. Int., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/895343] [PMID: 23019525]
[29]
Zeidman, R.; Jackson, C.S.; Magee, A.I. Protein acyl thioesterases. Mol. Membr. Biol., 2009, 26(1-2), 32-41.
[http://dx.doi.org/10.1080/09687680802629329] [PMID: 19115143]
[30]
Gowans, G.J.; Bridgers, J.B.; Zhang, J.; Dronamraju, R.; Burnetti, A.; King, D.A.; Thiengmany, A.V.; Shinsky, S.A.; Bhanu, N.V.; Garcia, B.A.; Buchler, N.E.; Strahl, B.D.; Morrison, A.J. Recognition of histone crotonylation by Taf14 links metabolic state to gene expression. Mol. Cell, 2019, 76(6), 909-921.e3.
[http://dx.doi.org/10.1016/j.molcel.2019.09.029] [PMID: 31676231]
[31]
Brown, C.; Lechner, T.; Howe, L.; Workman, J. The many HATs of transcription coactivators. Trends Biochem. Sci., 2000, 25(1), 15-19.
[http://dx.doi.org/10.1016/S0968-0004(99)01516-9]
[32]
Peterson, C.L.; Laniel, M.A. Histones and histone modifications. Curr. Biol., 2004, 14(14), R546-R551.
[http://dx.doi.org/10.1016/j.cub.2004.07.007] [PMID: 15268870]
[33]
Zhang, T.; Cooper, S.; Brockdorff, N. The interplay of histone modifications – writers that read. EMBO Rep., 2015, 16(11), 1467-1481.
[http://dx.doi.org/10.15252/embr.201540945] [PMID: 26474904]
[34]
Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Muzio, L.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med., 2017, 40(2), 271-280.
[http://dx.doi.org/10.3892/ijmm.2017.3036] [PMID: 28656226]
[35]
Hunter, T. Why nature chose phosphate to modify proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1602), 2513-2516.
[http://dx.doi.org/10.1098/rstb.2012.0013] [PMID: 22889903]
[36]
Liu, J.; Wang, Q.; Kang, Y.; Xu, S.; Pang, D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci., 2022, 12(1), 22.
[http://dx.doi.org/10.1186/s13578-022-00756-z] [PMID: 35216622]
[37]
Zhao, Y.; Jensen, O.N. Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics, 2009, 9(20), 4632-4641.
[http://dx.doi.org/10.1002/pmic.200900398] [PMID: 19743430]
[38]
Han, Z.J.; Feng, Y.H.; Gu, B.H.; Li, Y.M.; Chen, H. The post-translational modification, sumoylation, and cancer (Review). Int. J. Oncol., 2018, 52(4), 1081-1094.
[http://dx.doi.org/10.3892/ijo.2018.4280] [PMID: 29484374]
[39]
Duan, G.; Walther, D. The roles of post-translational modifications in the context of protein interaction networks. PLOS Comput. Biol., 2015, 11(2), e1004049.
[http://dx.doi.org/10.1371/journal.pcbi.1004049] [PMID: 25692714]
[40]
Wu, Z.; Huang, R.; Yuan, L. Crosstalk of intracellular post-translational modifications in cancer. Arch. Biochem. Biophys., 2019, 676, 108138.
[http://dx.doi.org/10.1016/j.abb.2019.108138] [PMID: 31606391]
[41]
Sharma, B.S.; Prabhakaran, V.; Desai, A.P.; Bajpai, J.; Verma, R.J.; Swain, P.K. Post-translational Modifications (PTMs), from a cancer perspective: An overview. Oncogen, 2019, 2(3)
[http://dx.doi.org/10.35702/onc.10012]
[42]
Baud, V.; Collares, D. Post-translational modifications of relB NF-κB subunit and associated functions. Cells, 2016, 5(2), 22.
[http://dx.doi.org/10.3390/cells5020022] [PMID: 27153093]
[43]
Zhao, D.; Zou, S.W.; Liu, Y.; Zhou, X.; Mo, Y.; Wang, P.; Xu, Y.H.; Dong, B.; Xiong, Y.; Lei, Q.Y.; Guan, K.L. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4), 464-476.
[http://dx.doi.org/10.1016/j.ccr.2013.02.005] [PMID: 23523103]
[44]
Zheng, S.; Koh, X.Y.; Goh, H.C.; Rahmat, S.A.B.; Hwang, L.A.; Lane, D.P. Inhibiting p53 acetylation reduces cancer chemotoxicity. Cancer Res., 2017, 77(16), 4342-4354.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0424] [PMID: 28655792]
[45]
Chen, Y.; Zhang, B.; Bao, L.; Jin, L.; Yang, M.; Peng, Y.; Kumar, A.; Wang, J.E.; Wang, C.; Zou, X.; Xing, C.; Wang, Y.; Luo, W. ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J. Clin. Invest., 2018, 128(5), 1937-1955.
[http://dx.doi.org/10.1172/JCI95089] [PMID: 29629903]
[46]
Unver, N.; Delgado, O.; Zeleke, K.; Cumpian, A.; Tang, X.; Caetano, M.S.; Wang, H.; Katayama, H.; Yu, H.; Szabo, E.; Wistuba, I.I.; Moghaddam, S.J.; Hanash, S.M.; Ostrin, E.J. Reduced IL -6 levels and tumor-associated phospho- STAT 3 are associated with reduced tumor development in a mouse model of lung cancer chemoprevention with myo- inositol. Int. J. Cancer, 2018, 142(7), 1405-1417.
[http://dx.doi.org/10.1002/ijc.31152] [PMID: 29134640]
[47]
Crosbie, P.A.J.; Crosbie, E.J.; Aspinall-O’Dea, M.; Walker, M.; Harrison, R.; Pernemalm, M.; Shah, R.; Joseph, L.; Booton, R.; Pierce, A.; Whetton, A.D. ERK and AKT phosphorylation status in lung cancer and emphysema using nanocapillary isoelectric focusing. BMJ Open Respir. Res., 2016, 3(1), e000114.
[http://dx.doi.org/10.1136/bmjresp-2015-000114] [PMID: 26918193]
[48]
Zhang, M.; Zhao, J.; Dong, H.; Xue, W.; Xing, J.; Liu, T.; Yu, X.; Gu, Y.; Sun, B.; Lu, H.; Zhang, Y. DNA methylation-specific analysis of g protein-coupled receptor-related genes in pan-cancer. Genes, 2022, 13(7), 1213.
[http://dx.doi.org/10.3390/genes13071213] [PMID: 35885996]
[49]
Caldeira, J.R.F.; Prando, É.C.; Quevedo, F.C.; Neto, F.A.M.; Rainho, C.A.; Rogatto, S.R. CDH1promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer, 2006, 6(1), 48.
[http://dx.doi.org/10.1186/1471-2407-6-48] [PMID: 16512896]
[50]
Feltus, F.A.; Lee, E.K.; Costello, J.F.; Plass, C.; Vertino, P.M. DNA motifs associated with aberrant CpG island methylation. Genomics, 2006, 87(5), 572-579.
[http://dx.doi.org/10.1016/j.ygeno.2005.12.016] [PMID: 16487676]
[51]
Wang, Q.; Gao, G.; Zhang, T.; Yao, K.; Chen, H.; Park, M.H.; Yamamoto, H.; Wang, K.; Ma, W.; Malakhova, M.; Bode, A.M.; Dong, Z. TRAF1 is critical for regulating the BRAF/MEK/ERK pathway in non–small cell lung carcinogenesis. Cancer Res., 2018, 78(14), 3982-3994.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0429] [PMID: 29748372]
[52]
Wu, W.; Koike, A.; Takeshita, T.; Ohta, T. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div., 2008, 3(1), 1.
[http://dx.doi.org/10.1186/1747-1028-3-1] [PMID: 18179693]
[53]
Park, H.B.; Kim, J.W.; Baek, K.H. Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int. J. Mol. Sci., 2020, 21(11), 3904.
[http://dx.doi.org/10.3390/ijms21113904] [PMID: 32486158]
[54]
Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta. Proteins Proteomics, 2016, 1864(10), 1372-1401.
[http://dx.doi.org/10.1016/j.bbapap.2016.06.007] [PMID: 27296530]
[55]
Costello, J.F.; Frühwald, M.C.; Smiraglia, D.J.; Rush, L.J.; Robertson, G.P.; Gao, X.; Wright, F.A.; Feramisco, J.D.; Peltomäki, P.; Lang, J.C.; Schuller, D.E.; Yu, L.; Bloomfield, C.D.; Caligiuri, M.A.; Yates, A.; Nishikawa, R.; Su Huang, H.J.; Petrelli, N.J.; Zhang, X.; O’Dorisio, M.S.; Held, W.A.; Cavenee, W.K.; Plass, C. Aberrant CpG-island methylation has non-random and tumour-type–specific patterns. Nat. Genet., 2000, 24(2), 132-138.
[http://dx.doi.org/10.1038/72785] [PMID: 10655057]
[56]
Panni, S. Phospho-peptide binding domains in S. cerevisiae model organism. Biochimie, 2019, 163, 117-127.
[http://dx.doi.org/10.1016/j.biochi.2019.06.005] [PMID: 31194995]
[57]
Skamnaki, V.T.; Owen, D.J.; Noble, M.E.M.; Lowe, E.D.; Lowe, G.; Oikonomakos, N.G.; Johnson, L.N. Catalytic mechanism of phosphorylase kinase probed by mutational studies. Biochemistry, 1999, 38(44), 14718-14730.
[http://dx.doi.org/10.1021/bi991454f] [PMID: 10545198]
[58]
Gallo, L.H.; Ko, J.; Donoghue, D.J. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle, 2017, 16(7), 634-648.
[http://dx.doi.org/10.1080/15384101.2017.1288326] [PMID: 28166483]
[59]
Nguyen, L.K.; Kolch, W.; Kholodenko, B.N. When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun. Signal., 2013, 11(1), 52.
[http://dx.doi.org/10.1186/1478-811X-11-52] [PMID: 23902637]
[60]
van Ree, J.H.; Jeganathan, K.B.; Malureanu, L.; van Deursen, J.M. Overexpression of the E2 ubiquitin–conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J. Cell Biol., 2010, 188(1), 83-100.
[http://dx.doi.org/10.1083/jcb.200906147] [PMID: 20065091]
[61]
Tzelepi, V.; Zhang, J.; Lu, J.F.; Kleb, B.; Wu, G.; Wan, X.; Hoang, A.; Efstathiou, E.; Sircar, K.; Navone, N.M.; Troncoso, P.; Liang, S.; Logothetis, C.J.; Maity, S.N.; Aparicio, A.M. Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin. Cancer Res., 2012, 18(3), 666-677.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1867] [PMID: 22156612]
[62]
Kajiro, M.; Hirota, R.; Nakajima, Y.; Kawanowa, K.; So-ma, K.; Ito, I.; Yamaguchi, Y.; Ohie, S.; Kobayashi, Y.; Seino, Y.; Kawano, M.; Kawabe, Y.; Takei, H.; Hayashi, S.; Kurosumi, M.; Murayama, A.; Kimura, K.; Yanagisawa, J. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell Biol., 2009, 11(3), 312-319.
[http://dx.doi.org/10.1038/ncb1839] [PMID: 19198599]
[63]
Schwickart, M.; Huang, X.; Lill, J.R.; Liu, J.; Ferrando, R.; French, D.M.; Maecker, H.; O’Rourke, K.; Bazan, F.; Eastham-Anderson, J.; Yue, P.; Dornan, D.; Huang, D.C.S.; Dixit, V.M. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature, 2010, 463(7277), 103-107.
[http://dx.doi.org/10.1038/nature08646] [PMID: 20023629]
[64]
Gu, Y.; Yang, M.; Zhao, M.; Luo, Q.; Yang, L.; Peng, H.; Wang, J.; Huang, S.; Zheng, Z.; Yuan, X.; Liu, P.; Huang, C. The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol., 2015, 36(11), 8379-8387.
[http://dx.doi.org/10.1007/s13277-015-3566-0] [PMID: 26018507]
[65]
Nestal de Moraes, G.; Ji, Z.; Fan, L.Y.N.; Yao, S.; Zona, S.; Sharrocks, A.D.; Lam, E.W.F. SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis, 2018, 7(3), 29.
[http://dx.doi.org/10.1038/s41389-018-0038-6] [PMID: 29540677]
[66]
Qin, G.; Tu, X.; Li, H.; Cao, P.; Chen, X.; Song, J.; Han, H.; Li, Y.; Guo, B.; Yang, L.; Yan, P.; Li, P.; Gao, C.; Zhang, J.; Yang, Y.; Zheng, J.; Ju, H.; Lu, L.; Wang, X.; Yu, C.; Sun, Y.; Xing, B.; Ji, H.; Lin, D.; He, F.; Zhou, G. Long noncoding RNA p53-stabilizing and activating RNA promotes p53 signaling by inhibiting heterogeneous nuclear ribonucleoprotein k desumoylation and suppresses hepatocellular carcinoma. Hepatology, 2020, 71(1), 112-129.
[http://dx.doi.org/10.1002/hep.30793] [PMID: 31148184]
[67]
Mal, R.; Magner, A.; David, J.; Datta, J.; Vallabhaneni, M.; Kassem, M.; Manouchehri, J.; Willingham, N.; Stover, D.; Vandeusen, J.; Sardesai, S.; Williams, N.; Wesolowski, R.; Lustberg, M.; Ganju, R.K.; Ramaswamy, B.; Cherian, M.A. Estrogen Receptor Beta (ERβ): A ligand activated tumor suppressor. Front. Oncol., 2020, 10, 587386.
[http://dx.doi.org/10.3389/fonc.2020.587386] [PMID: 33194742]
[68]
Kim, J.H.; Lee, J.M.; Nam, H.J.; Choi, H.J.; Yang, J.W.; Lee, J.S.; Kim, M.H.; Kim, S.I.; Chung, C.H.; Kim, K.I.; Baek, S.H. SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20793-20798.
[http://dx.doi.org/10.1073/pnas.0710343105] [PMID: 18087039]
[69]
Park, S.Y.; Na, Y.; Lee, M.H.; Seo, J.S.; Lee, Y.H.; Choi, K.C.; Choi, H.K.; Yoon, H.G. SUMOylation of TBL1 and TBLR1 promotes androgen-independent prostate cancer cell growth. Oncotarget, 2106, 7(27), 41110-41122.
[http://dx.doi.org/10.18632/oncotarget.9002] [PMID: 27129164]
[70]
Ge, X.; Peng, X.; Li, M.; Ji, F.; Chen, J.; Zhang, D. OGT regulated O-GlcNacylation promotes migration and invasion by activating IL-6/STAT3 signaling in NSCLC cells. Pathol. Res. Pract., 2021, 225, 153580.
[http://dx.doi.org/10.1016/j.prp.2021.153580] [PMID: 34391182]
[71]
Shin, E.M.; Huynh, V.T.; Neja, S.A.; Liu, C.Y.; Raju, A.; Tan, K.; Tan, N.S.; Gunaratne, J.; Bi, X.; Iyer, L.M.; Aravind, L.; Tergaonkar, V. GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer. Sci. Adv., 2021, 7(12), eabe2470.
[http://dx.doi.org/10.1126/sciadv.abe2470] [PMID: 33731348]
[72]
Itkonen, H.M.; Minner, S.; Guldvik, I.J.; Sandmann, M.J.; Tsourlakis, M.C.; Berge, V.; Svindland, A.; Schlomm, T.; Mills, I.G. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res., 2013, 73(16), 5277-5287.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0549] [PMID: 23720054]
[73]
Xu, Y.; Sheng, X.; Zhao, T.; Zhang, L.; Ruan, Y.; Lu, H. O-GlcNAcylation of MEK2 promotes the proliferation and migration of breast cancer cells. Glycobiology, 2021, 31(5), 571-581.
[http://dx.doi.org/10.1093/glycob/cwaa103] [PMID: 33226073]
[74]
Otsuka, K.; Satoyoshi, R.; Nanjo, H.; Miyazawa, H.; Abe, Y.; Tanaka, M.; Yamamoto, Y.; Shibata, H. Acquired/intratumoral mutation of KRAS during metastatic progression of colorectal carcinogenesis. Oncol. Lett., 2012, 3(3), 649-653.
[http://dx.doi.org/10.3892/ol.2011.543] [PMID: 22740969]
[75]
Liu, H.; Liu, X.; Zhang, C.; Zhu, H.; Xu, Q.; Bu, Y.; Lei, Y. Redox imbalance in the development of colorectal cancer. J. Cancer, 2017, 8(9), 1586-1597.
[http://dx.doi.org/10.7150/jca.18735] [PMID: 28775778]
[76]
Best, S.A.; Sutherland, K.D. “Keaping” a lid on lung cancer: the Keap1-Nrf2 pathway. Cell Cycle, 2018, 17(14), 1696-1707.
[http://dx.doi.org/10.1080/15384101.2018.1496756] [PMID: 30009666]
[77]
Bornstein, G.; Ganoth, D.; Hershko, A. Regulation of neddylation and deneddylation of cullin1 in SCF Skp2 ubiquitin ligase by F-box protein and substrate. Proc. Natl. Acad. Sci. USA, 2006, 103(31), 11515-11520.
[http://dx.doi.org/10.1073/pnas.0603921103] [PMID: 16861300]
[78]
Lacroix, M.; Toillon, R.A.; Leclercq, G. p53 and breast cancer, an update. Endocr. Relat. Cancer, 2006, 13(2), 293-325.
[http://dx.doi.org/10.1677/erc.1.01172] [PMID: 16728565]
[79]
Naik, S.K.; Lam, E.W.F.; Parija, M.; Prakash, S.; Jiramongkol, Y.; Adhya, A.K.; Parida, D.K.; Mishra, S.K. NEDDylation negatively regulates ERRβ expression to promote breast cancer tumorigenesis and progression. Cell Death Dis., 2020, 11(8), 703.
[http://dx.doi.org/10.1038/s41419-020-02838-7] [PMID: 32839427]
[80]
Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci., 2011, 68(18), 3033-3046.
[http://dx.doi.org/10.1007/s00018-011-0735-1] [PMID: 21637948]
[81]
Zhu, D.; Zhang, Y.; Wang, S. Histone citrullination: a new target for tumors. Mol. Cancer, 2021, 20(1), 90.
[http://dx.doi.org/10.1186/s12943-021-01373-z] [PMID: 34116679]
[82]
Willumsen, N.; Bager, C.L.; Leeming, D.J.; Smith, V.; Christiansen, C.; Karsdal, M.A.; Dornan, D.; Bay-Jensen, A.C. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer. Cancer Med., 2014, 3(5), 1136-1145.
[http://dx.doi.org/10.1002/cam4.303] [PMID: 25044252]
[83]
Sharma, P.; Lioutas, A.; Fernandez-Fuentes, N.; Quilez, J.; Carbonell-Caballero, J.; Wright, R.H.G.; Di Vona, C.; Le Dily, F.; Schüller, R.; Eick, D.; Oliva, B.; Beato, M. Arginine citrullination at the C-terminal domain controls RNA polymerase ii transcription. Mol. Cell, 2019, 73(1), 84-96.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.10.016] [PMID: 30472187]
[84]
Kattan, W.E.; Hancock, J.F. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem. J., 2020, 477(15), 2893-2919.
[http://dx.doi.org/10.1042/BCJ20190839] [PMID: 32797215]
[85]
Fiorentino, M.; Zadra, G.; Palescandolo, E.; Fedele, G.; Bailey, D.; Fiore, C.; Nguyen, P.L.; Migita, T.; Zamponi, R.; Di Vizio, D.; Priolo, C.; Sharma, C.; Xie, W.; Hemler, M.E.; Mucci, L.; Giovannucci, E.; Finn, S.; Loda, M. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of β-catenin in prostate cancer. Lab. Invest., 2008, 88(12), 1340-1348.
[http://dx.doi.org/10.1038/labinvest.2008.97] [PMID: 18838960]
[86]
Zhou, B.; Liu, L.; Reddivari, M.; Zhang, X.A. The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res., 2004, 64(20), 7455-7463.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1574] [PMID: 15492270]
[87]
Di Vizio, D.; Adam, R.M.; Kim, J.; Kim, R.; Sotgia, F.; Williams, T.; Demichelis, F.; Solomon, K.R.; Loda, M.; Rubin, M.A.; Lisanti, M.P.; Freeman, M.R. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle, 2008, 7(14), 2257-2267.
[http://dx.doi.org/10.4161/cc.7.14.6475] [PMID: 18635971]
[88]
Bollu, L.R.; Ren, J.; Blessing, A.M.; Katreddy, R.R.; Gao, G.; Xu, L.; Wang, J.; Su, F.; Weihua, Z. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle, 2014, 13(15), 2415-2430.
[http://dx.doi.org/10.4161/cc.29338] [PMID: 25483192]
[89]
Liao, P.; Bhattarai, N.; Cao, B.; Zhou, X.; Jung, J.H.; Damera, K.; Fuselier, T.T.; Thareja, S.; Wimley, W.C.; Wang, B.; Zeng, S.X.; Lu, H. Crotonylation at serine 46 impairs p53 activity. Biochem. Biophys. Res. Commun., 2020, 524(3), 730-735.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.152] [PMID: 32035620]
[90]
Zhang, X.; Liu, Z.; Zhang, Y.; Xu, L.; Chen, M.; Zhou, Y.; Yu, J.; Li, X.; Zhang, N. SEPT2 crotonylation promotes metastasis and recurrence in hepatocellular carcinoma and is associated with poor survival. Cell Biosci., 2023, 13(1), 63.
[http://dx.doi.org/10.1186/s13578-023-00996-7] [PMID: 36949517]
[91]
Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev., 2004, 18(17), 2046-2059.
[http://dx.doi.org/10.1101/gad.1214604] [PMID: 15342487]
[92]
Luo, P.; Li, L.; Huang, J.; Mao, D.; Lou, S.; Ruan, J.; Chen, J.; Tang, R.; Shi, Y.; Zhou, S.; Yang, H. The role of sumoylation in the neurovascular dysfunction after acquired brain injury. Front. Pharmacol., 2023, 14, 1125662.
[http://dx.doi.org/10.3389/fphar.2023.1125662] [PMID: 37033632]
[93]
Lara-Ureña, N.; Jafari, V.; García-Domínguez, M. Cancer-associated dysregulation of sumo regulators: Proteases and ligases. Int. J. Mol. Sci., 2022, 23(14), 8012.
[http://dx.doi.org/10.3390/ijms23148012] [PMID: 35887358]
[94]
Kunz, K.; Piller, T.; Müller, S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J. Cell Sci., 2018, 131(6), jcs211904.
[http://dx.doi.org/10.1242/jcs.211904] [PMID: 29559551]
[95]
Rawlings, N.; Lee, L.; Nakamura, Y.; Wilkinson, K.A.; Henley, J.M. Protective role of the deSUMOylating enzyme SENP3 in myocardial ischemia-reperfusion injury. PLoS One, 2019, 14(4), e0213331.
[http://dx.doi.org/10.1371/journal.pone.0213331] [PMID: 30973885]
[96]
Rabellino, A.; Andreani, C.; Scaglioni, P.P. The role of PIAS SUMO E3-ligases in cancer. Cancer Res., 2017, 77(7), 1542-1547.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2958] [PMID: 28330929]
[97]
Torres, C.R.; Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem., 1984, 259(5), 3308-3317.
[http://dx.doi.org/10.1016/S0021-9258(17)43295-9] [PMID: 6421821]
[98]
Bond, M.R.; Hanover, J.A. A little sugar goes a long way: The cell biology of O-GlcNAc. J. Cell Biol., 2015, 208(7), 869-880.
[http://dx.doi.org/10.1083/jcb.201501101] [PMID: 25825515]
[99]
Szymura, S.J.; Zaemes, J.P.; Allison, D.F.; Clift, S.H.; D’Innocenzi, J.M.; Gray, L.G.; McKenna, B.D.; Morris, B.B.; Bekiranov, S.; LeGallo, R.D.; Jones, D.R.; Mayo, M.W. NF-κB upregulates glutamine-fructose-6-phosphate transaminase 2 to promote migration in non-small cell lung cancer. Cell Commun. Signal., 2019, 17(1), 24.
[http://dx.doi.org/10.1186/s12964-019-0335-5] [PMID: 30885209]
[100]
Carvalho-cruz, P.; Alisson-Silva, F.; Todeschini, A.R.; Dias, W.B. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev. Dyn., 2018, 247(3), 481-491.
[http://dx.doi.org/10.1002/dvdy.24553] [PMID: 28722313]
[101]
Zhang, X.; Sai, B.; Wang, F.; Wang, L.; Wang, Y.; Zheng, L.; Li, G.; Tang, J.; Xiang, J. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol. Cancer, 2019, 18(1), 40.
[http://dx.doi.org/10.1186/s12943-019-0959-5] [PMID: 30866952]
[102]
Diepenbruck, M.; Christofori, G. Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol., 2016, 43, 7-13.
[http://dx.doi.org/10.1016/j.ceb.2016.06.002] [PMID: 27371787]
[103]
Lignitto, L.; LeBoeuf, S.E.; Homer, H.; Jiang, S.; Askenazi, M.; Karakousi, T.R.; Pass, H.I.; Bhutkar, A.J.; Tsirigos, A.; Ueberheide, B.; Sayin, V.I.; Papagiannakopoulos, T.; Pagano, M. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell, 2019, 178(2), 316-329.e18.
[http://dx.doi.org/10.1016/j.cell.2019.06.003] [PMID: 31257023]
[104]
Ali, A.; Kim, S.H.; Kim, M.J.; Choi, M.Y.; Kang, S.S.; Cho, G.J.; Kim, Y.S.; Choi, J.Y.; Choi, W.S. O-Glcnacylation of NF-κB promotes lung metastasis of cervical cancer cells via upregulation of CXCR4 expression. Mol. Cells, 2017, 40(7), 476-484.
[http://dx.doi.org/10.14348/molcells.2017.2309] [PMID: 28681591]
[105]
Yan, M.; Xu, Q.; Zhang, P.; Zhou, X.; Zhang, Z.; Chen, W. Correlation of NF-κB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer, 2010, 10(1), 437.
[http://dx.doi.org/10.1186/1471-2407-10-437] [PMID: 20716363]
[106]
Marshall, S.; Bacote, V.; Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem., 1991, 266(8), 4706-4712.
[http://dx.doi.org/10.1016/S0021-9258(19)67706-9] [PMID: 2002019]
[107]
Lu, Q.; Zhang, X.; Liang, T.; Bai, X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol. Med., 2022, 28(1), 115.
[http://dx.doi.org/10.1186/s10020-022-00544-y] [PMID: 36104770]
[108]
Dennis, J.W.; Lau, K.S.; Demetriou, M.; Nabi, I.R. Adaptive regulation at the cell surface by N-glycosylation. Traffic, 2009, 10(11), 1569-1578.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00981.x] [PMID: 19761541]
[109]
Rider, M.H.; Bertrand, L.; Vertommen, D.; Michels, P.A.; Rousseau, G.G.; Hue, L. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem. J., 2004, 381(3), 561-579.
[http://dx.doi.org/10.1042/BJ20040752] [PMID: 15170386]
[110]
Pilkis, S.J.; Claus, T.H.; Kurland, I.J.; Lange, A.J. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme. Annu. Rev. Biochem., 1995, 64(1), 799-835.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.004055] [PMID: 7574501]
[111]
Okar, D.A.; Lange, A.J.; Manzano, À.; Navarro-Sabatè, A.; Riera, L.; Bartrons, R. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci., 2001, 26(1), 30-35.
[http://dx.doi.org/10.1016/S0968-0004(00)01699-6] [PMID: 11165514]
[112]
Telang, S.; Yalcin, A.; Clem, A.L.; Bucala, R.; Lane, A.N.; Eaton, J.W.; Chesney, J. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 2006, 25(55), 7225-7234.
[http://dx.doi.org/10.1038/sj.onc.1209709] [PMID: 16715124]
[113]
Seo, M.; Lee, Y.H. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. J. Mol. Biol., 2014, 426(4), 830-842.
[http://dx.doi.org/10.1016/j.jmb.2013.11.021] [PMID: 24295899]
[114]
Musaogullari, A.; Chai, Y.C. Redox regulation by protein S-glutathionylation: From molecular mechanisms to implications in health and disease. Int. J. Mol. Sci., 2020, 21(21), 8113.
[http://dx.doi.org/10.3390/ijms21218113] [PMID: 33143095]
[115]
Mieyal, J.J.; Gallogly, M.M.; Qanungo, S.; Sabens, E.A.; Shelton, M.D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal., 2008, 10(11), 1941-1988.
[http://dx.doi.org/10.1089/ars.2008.2089] [PMID: 18774901]
[116]
Salmeen, A.; Andersen, J.N.; Myers, M.P.; Meng, T.C.; Hinks, J.A.; Tonks, N.K.; Barford, D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature, 2003, 423(6941), 769-773.
[http://dx.doi.org/10.1038/nature01680] [PMID: 12802338]
[117]
Stoyanovsky, D.A.; Maeda, A.; Atkins, J.L.; Kagan, V.E. Assessments of thiyl radicals in biosystems: difficulties and new applications. Anal. Chem., 2011, 83(17), 6432-6438.
[http://dx.doi.org/10.1021/ac200418s] [PMID: 21591751]
[118]
Foster, M.W.; Hess, D.T.; Stamler, J.S. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med., 2009, 15(9), 391-404.
[http://dx.doi.org/10.1016/j.molmed.2009.06.007] [PMID: 19726230]
[119]
Huang, K.P.; Huang, F.L. Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem. Pharmacol., 2002, 64(5-6), 1049-1056.
[http://dx.doi.org/10.1016/S0006-2952(02)01175-9] [PMID: 12213604]
[120]
Gallogly, M.M.; Mieyal, J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol., 2007, 7(4), 381-391.
[http://dx.doi.org/10.1016/j.coph.2007.06.003] [PMID: 17662654]
[121]
Kamitani, T.; Kito, K.; Nguyen, H.P.; Yeh, E.T.H. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J. Biol. Chem., 1997, 272(45), 28557-28562.
[http://dx.doi.org/10.1074/jbc.272.45.28557] [PMID: 9353319]
[122]
Rabut, G.; Peter, M. Function and regulation of protein neddylation. EMBO Rep., 2008, 9(10), 969-976.
[http://dx.doi.org/10.1038/embor.2008.183] [PMID: 18802447]
[123]
Xirodimas, D.P. Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem. Soc. Trans., 2008, 36(5), 802-806.
[http://dx.doi.org/10.1042/BST0360802] [PMID: 18793140]
[124]
Zhao, Y.; Morgan, M.A.; Sun, Y. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid. Redox Signal., 2014, 21(17), 2383-2400.
[http://dx.doi.org/10.1089/ars.2013.5795] [PMID: 24410571]
[125]
Walden, H.; Podgorski, M.S.; Huang, D.T.; Miller, D.W.; Howard, R.J.; Minor, D.L., Jr; Holton, J.M.; Schulman, B.A. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell, 2003, 12(6), 1427-1437.
[http://dx.doi.org/10.1016/S1097-2765(03)00452-0] [PMID: 14690597]
[126]
Gong, L.; Yeh, E.T.H. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem., 1999, 274(17), 12036-12042.
[http://dx.doi.org/10.1074/jbc.274.17.12036] [PMID: 10207026]
[127]
Huang, D.T.; Paydar, A.; Zhuang, M.; Waddell, M.B.; Holton, J.M.; Schulman, B.A. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell, 2005, 17(3), 341-350.
[http://dx.doi.org/10.1016/j.molcel.2004.12.020] [PMID: 15694336]
[128]
Zhou, W.; Xu, J.; Li, H.; Xu, M.; Chen, Z.J.; Wei, W.; Pan, Z.; Sun, Y. Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage. Clin. Cancer Res., 2017, 23(4), 1104-1116.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1585] [PMID: 27591266]
[129]
Deng, Q.; Zhang, J.; Gao, Y.; She, X.; Wang, Y.; Wang, Y.; Ge, X. MLN4924 protects against bleomycin-induced pulmonary fibrosis by inhibiting the early inflammatory process. Am. J. Transl. Res., 2017, 9(4), 1810-1821.
[PMID: 28469786]
[130]
Li, L.; Wang, M.; Yu, G.; Chen, P.; Li, H.; Wei, D.; Zhu, J.; Xie, L.; Jia, H.; Shi, J.; Li, C.; Yao, W.; Wang, Y.; Gao, Q.; Jeong, L.S.; Lee, H.W.; Yu, J.; Hu, F.; Mei, J.; Wang, P.; Chu, Y.; Qi, H.; Yang, M.; Dong, Z.; Sun, Y.; Hoffman, R.M.; Jia, L. Overactivated neddylation pathway as a therapeutic target in lung cancer. J. Natl. Cancer Inst., 2014, 106(6), dju083.
[http://dx.doi.org/10.1093/jnci/dju083] [PMID: 24853380]
[131]
Chen, Y.; Neve, R.L.; Liu, H. Neddylation dysfunction in Alzheimer’s disease. J. Cell. Mol. Med., 2012, 16(11), 2583-2591.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01604.x] [PMID: 22805479]
[132]
Zubiete-Franco, I.; Fernández-Tussy, P.; Barbier-Torres, L.; Simon, J.; Fernández-Ramos, D.; Lopitz-Otsoa, F.; Gutiérrez-de Juan, V.; de Davalillo, S.L.; Duce, A.M.; Iruzubieta, P.; Taibo, D.; Crespo, J.; Caballeria, J.; Villa, E.; Aurrekoetxea, I.; Aspichueta, P.; Varela-Rey, M.; Lu, S.C.; Mato, J.M.; Beraza, N.; Delgado, T.C.; Martínez-Chantar, M.L. Deregulated neddylation in liver fibrosis. Hepatology, 2017, 65(2), 694-709.
[http://dx.doi.org/10.1002/hep.28933] [PMID: 28035772]
[133]
Barbier-Torres, L.; Delgado, T.C.; García-Rodríguez, J.L.; Zubiete-Franco, I.; Fernández-Ramos, D.; Buqué, X.; Cano, A.; Juan, V.G.; Fernández-Domínguez, I.; Lopitz-Otsoa, F.; Fernández-Tussy, P.; Boix, L.; Bruix, J.; Villa, E.; Castro, A.; Lu, S.C.; Aspichueta, P.; Xirodimas, D.; Varela-Rey, M.; Mato, J.M.; Beraza, N.; Martínez-Chantar, M.L. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget, 2015, 6(4), 2509-2523.
[http://dx.doi.org/10.18632/oncotarget.3191] [PMID: 25650664]
[134]
Luo, Z.; Yu, G.; Lee, H.W.; Li, L.; Wang, L.; Yang, D.; Pan, Y.; Ding, C.; Qian, J.; Wu, L.; Chu, Y.; Yi, J.; Wang, X.; Sun, Y.; Jeong, L.S.; Liu, J.; Jia, L. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res., 2012, 72(13), 3360-3371.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0388] [PMID: 22562464]
[135]
Chung, D.; Dellaire, G. The Role of the COP9 Signalosome and Neddylation in DNA Damage Signaling and Repair. Biomolecules, 2015, 5(4), 2388-2416.
[http://dx.doi.org/10.3390/biom5042388] [PMID: 26437438]
[136]
Bohnsack, R.N.; Haas, A.L. Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J. Biol. Chem., 2003, 278(29), 26823-26830.
[http://dx.doi.org/10.1074/jbc.M303177200] [PMID: 12740388]
[137]
Ma, T.; Chen, Y.; Zhang, F.; Yang, C.Y.; Wang, S.; Yu, X. RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol. Cell, 2013, 49(5), 897-907.
[http://dx.doi.org/10.1016/j.molcel.2013.01.006] [PMID: 23394999]
[138]
Kurz, T.; Özlü, N.; Rudolf, F.; O’Rourke, S.M.; Luke, B.; Hofmann, K.; Hyman, A.A.; Bowerman, B.; Peter, M. The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature, 2005, 435(7046), 1257-1261.
[http://dx.doi.org/10.1038/nature03662] [PMID: 15988528]
[139]
Xirodimas, D.P.; Saville, M.K.; Bourdon, J.C.; Hay, R.T.; Lane, D.P. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell, 2004, 118(1), 83-97.
[http://dx.doi.org/10.1016/j.cell.2004.06.016] [PMID: 15242646]
[140]
Oved, S.; Mosesson, Y.; Zwang, Y.; Santonico, E.; Shtiegman, K.; Marmor, M.D.; Kochupurakkal, B.S.; Katz, M.; Lavi, S.; Cesareni, G.; Yarden, Y. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J. Biol. Chem., 2006, 281(31), 21640-21651.
[http://dx.doi.org/10.1074/jbc.M513034200] [PMID: 16735510]
[141]
Zuo, W.; Huang, F.; Chiang, Y.J.; Li, M.; Du, J.; Ding, Y.; Zhang, T.; Lee, H.W.; Jeong, L.S.; Chen, Y.; Deng, H.; Feng, X.H.; Luo, S.; Gao, C.; Chen, Y.G. c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor. Mol. Cell, 2013, 49(3), 499-510.
[http://dx.doi.org/10.1016/j.molcel.2012.12.002] [PMID: 23290524]
[142]
Rabut, G.; Le Dez, G.; Verma, R.; Makhnevych, T.; Knebel, A.; Kurz, T.; Boone, C.; Deshaies, R.J.; Peter, M. The TFIIH subunit Tfb3 regulates cullin neddylation. Mol. Cell, 2011, 43(3), 488-495.
[http://dx.doi.org/10.1016/j.molcel.2011.05.032] [PMID: 21816351]
[143]
Noguchi, K.; Okumura, F.; Takahashi, N.; Kataoka, A.; Kamiyama, T.; Todo, S.; Hatakeyama, S. TRIM40 promotes neddylation of IKK and is downregulated in gastrointestinal cancers. Carcinogenesis, 2011, 32(7), 995-1004.
[http://dx.doi.org/10.1093/carcin/bgr068] [PMID: 21474709]
[144]
Xie, P.; Zhang, M.; He, S.; Lu, K.; Chen, Y.; Xing, G.; Lu, Y.; Liu, P.; Li, Y.; Wang, S.; Chai, N.; Wu, J.; Deng, H.; Wang, H.R.; Cao, Y.; Zhao, F.; Cui, Y.; Wang, J.; He, F.; Zhang, L. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat. Commun., 2014, 5(1), 3733.
[http://dx.doi.org/10.1038/ncomms4733] [PMID: 24821572]
[145]
Chumanevich, A.A.; Causey, C.P.; Knuckley, B.A.; Jones, J.E.; Poudyal, D.; Chumanevich, A.P.; Davis, T.; Matesic, L.E.; Thompson, P.R.; Hofseth, L.J. Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(6), G929-G938.
[http://dx.doi.org/10.1152/ajpgi.00435.2010] [PMID: 21415415]
[146]
Harlen, K.M.; Churchman, L.S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol., 2017, 18(4), 263-273.
[http://dx.doi.org/10.1038/nrm.2017.10] [PMID: 28248323]
[147]
Brentville, V.A.; Vankemmelbeke, M.; Metheringham, R.L.; Durrant, L.G. Post-translational modifications such as citrullination are excellent targets for cancer therapy. Semin. Immunol., 2020, 47, 101393.
[http://dx.doi.org/10.1016/j.smim.2020.101393] [PMID: 31932199]
[148]
Vartak, N.; Papke, B.; Grecco, H.E.; Rossmannek, L.; Waldmann, H.; Hedberg, C.; Bastiaens, P.I.H. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys. J., 2014, 106(1), 93-105.
[http://dx.doi.org/10.1016/j.bpj.2013.11.024] [PMID: 24411241]
[149]
Anderson, A.M.; Ragan, M.A. Palmitoylation: a protein S-acylation with implications for breast cancer. NPJ Breast Cancer, 2016, 2(1), 16028.
[http://dx.doi.org/10.1038/npjbcancer.2016.28] [PMID: 28721385]
[150]
Babina, I.S.; McSherry, E.A.; Donatello, S.; Hill, A.D.K.; Hopkins, A.M. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res., 2014, 16(1), R19.
[http://dx.doi.org/10.1186/bcr3614] [PMID: 24512624]
[151]
Li, X.; Shen, L.; Xu, Z.; Liu, W.; Li, A.; Xu, J. Protein palmitoylation modification during viral infection and detection methods of palmitoylated proteins. Front. Cell. Infect. Microbiol., 2022, 12, 821596.
[http://dx.doi.org/10.3389/fcimb.2022.821596] [PMID: 35155279]
[152]
Mitchell, D.A.; Vasudevan, A.; Linder, M.E.; Deschenes, R.J. Thematic review series: Lipid Posttranslational Modifications. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J. Lipid Res., 2006, 47(6), 1118-1127.
[http://dx.doi.org/10.1194/jlr.R600007-JLR200] [PMID: 16582420]
[153]
Gottlieb, C.D.; Linder, M.E. Structure and function of DHHC protein S -acyltransferases. Biochem. Soc. Trans., 2017, 45(4), 923-928.
[http://dx.doi.org/10.1042/BST20160304] [PMID: 28630137]
[154]
Lobo, S.; Greentree, W.K.; Linder, M.E.; Deschenes, R.J. Identification of a Ras Palmitoyltransferase inSaccharomyces cerevisiae. J. Biol. Chem., 2002, 277(43), 41268-41273.
[http://dx.doi.org/10.1074/jbc.M206573200] [PMID: 12193598]
[155]
Roth, A.F.; Feng, Y.; Chen, L.; Davis, N.G. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol., 2002, 159(1), 23-28.
[http://dx.doi.org/10.1083/jcb.200206120] [PMID: 12370247]
[156]
Stix, R.; Lee, C.J.; Faraldo-Gómez, J.D.; Banerjee, A. Structure and Mechanism of DHHC Protein Acyltransferases. J. Mol. Biol., 2020, 432(18), 4983-4998.
[http://dx.doi.org/10.1016/j.jmb.2020.05.023] [PMID: 32522557]
[157]
Rana, M.S.; Lee, C.J.; Banerjee, A. The molecular mechanism of DHHC protein acyltransferases. Biochem. Soc. Trans., 2019, 47(1), 157-167.
[http://dx.doi.org/10.1042/BST20180429] [PMID: 30559274]
[158]
Rana, M.S.; Kumar, P.; Lee, C.J.; Verardi, R.; Rajashankar, K.R.; Banerjee, A. Fatty acyl recognition and transfer by an integral membrane S -acyltransferase. Science, 2018, 359(6372), eaao6326.
[http://dx.doi.org/10.1126/science.aao6326] [PMID: 29326245]
[159]
Ntorla, A.; Burgoyne, J.R. The regulation and function of histone crotonylation. Front. Cell Dev. Biol., 2021, 9, 624914.
[http://dx.doi.org/10.3389/fcell.2021.624914] [PMID: 33889571]
[160]
Sabari, B.R.; Tang, Z.; Huang, H.; Yong-Gonzalez, V.; Molina, H.; Kong, H.E.; Dai, L.; Shimada, M.; Cross, J.R.; Zhao, Y.; Roeder, R.G.; Allis, C.D. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell, 2015, 58(2), 203-215.
[http://dx.doi.org/10.1016/j.molcel.2015.02.029] [PMID: 25818647]
[161]
Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[162]
Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; Thompson, C.B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 2009, 324(5930), 1076-1080.
[http://dx.doi.org/10.1126/science.1164097] [PMID: 19461003]
[163]
Patton, W.F. Emerging Protein Biotherapeutics. CRC Press, Taylor and Francis Group.: Boca Raton, FL USA,, 2009. pp. 368.
[http://dx.doi.org/10.1002/pmic.201190083]
[164]
Jung, S.Y.; Li, Y.; Wang, Y.; Chen, Y.; Zhao, Y.; Qin, J. Complications in the assignment of 14 and 28 Da mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins. Anal. Chem., 2008, 80(5), 1721-1729.
[http://dx.doi.org/10.1021/ac7021025] [PMID: 18247584]
[165]
Hornbeck, P.V.; Kornhauser, J.M.; Latham, V.; Murray, B.; Nandhikonda, V.; Nord, A.; Skrzypek, E.; Wheeler, T.; Zhang, B.; Gnad, F. 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res., 2019, 47(D1), D433-D441.
[http://dx.doi.org/10.1093/nar/gky1159] [PMID: 30445427]
[166]
Sheng, Z.; Wang, X.; Ma, Y.; Zhang, D.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. MS-based strategies for identification of protein SUMOylation modification. Electrophoresis, 2019, 40(21), 2877-2887.
[http://dx.doi.org/10.1002/elps.201900100]
[167]
Becker, J.; Barysch, S.V.; Karaca, S.; Dittner, C.; Hsiao, H.H.; Diaz, M.B.; Herzig, S.; Urlaub, H.; Melchior, F. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat. Struct. Mol. Biol., 2013, 20(4), 525-531.
[http://dx.doi.org/10.1038/nsmb.2526] [PMID: 23503365]
[168]
Dunphy, K.; Dowling, P.; Bazou, D.; O’Gorman, P. Current methods of post-translational modification analysis and their applications in blood cancers. Cancers (Basel), 2021, 13(8), 1930.
[http://dx.doi.org/10.3390/cancers13081930] [PMID: 33923680]
[169]
Chang, C.C.; Tung, C.H.; Chen, C.W.; Tu, C.H.; Chu, Y.W. SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications. Sci. Rep., 2018, 8(1), 15512.
[http://dx.doi.org/10.1038/s41598-018-33951-5] [PMID: 30341374]
[170]
Clark, P.M.; Dweck, J.F.; Mason, D.E.; Hart, C.R.; Buck, S.B.; Peters, E.C.; Agnew, B.J.; Hsieh-Wilson, L.C. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc., 2008, 130(35), 11576-11577.
[http://dx.doi.org/10.1021/ja8030467] [PMID: 18683930]
[171]
Thompson, J.W.; Griffin, M.E.; Hsieh-Wilson, L.C. Methods to detect protein glutathionylation. Curr. Protocol. Toxicol., 2018, 57, 101-135.
[http://dx.doi.org/10.1016/bs.mie.2017.06.009]
[172]
Wang, J.; Torii, M.; Liu, H.; Hart, G.W.; Hu, Z.Z. dbOGAP - an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics, 2011, 12(1), 91.
[http://dx.doi.org/10.1186/1471-2105-12-91] [PMID: 21466708]
[173]
Poerschke, R.L.; Fritz, K.S.; Franklin, C.C. Methods to detect protein glutathionylation. Curr. Protoc. Toxicol., 2013, 57(1), 17.1-, 18.
[http://dx.doi.org/10.1002/0471140856.tx0617s57] [PMID: 24510510]
[174]
Chen, Y.J.; Lu, C.T.; Huang, K.Y.; Wu, H.Y.; Chen, Y.J.; Lee, T.Y. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity. PLoS One, 2015, 10(4), e0118752.
[http://dx.doi.org/10.1371/journal.pone.0118752] [PMID: 25849935]
[175]
Wang, S.Y.; Liu, X.; Liu, Y.; Zhang, H.Y.; Zhang, Y.B.; Liu, C.; Song, J.; Niu, J.B.; Zhang, S.Y. Review of NEDDylation inhibition activity detection methods. Bioorg. Med. Chem., 2021, 29, 115875.
[http://dx.doi.org/10.1016/j.bmc.2020.115875] [PMID: 33232875]
[176]
Ju, Z.; Wang, S.Y. Identify Lysine Neddylation Sites Using Bi-profile Bayes Feature Extraction via the Chou’s 5-steps Rule and General Pseudo Components. Curr. Genomics, 2020, 20(8), 592-601.
[http://dx.doi.org/10.2174/1389202921666191223154629] [PMID: 32581647]
[177]
Clancy, K.W.; Weerapana, E.; Thompson, P.R. Detection and identification of protein citrullination in complex biological systems. Curr. Opin. Chem. Biol., 2016, 30, 1-6.
[http://dx.doi.org/10.1016/j.cbpa.2015.10.014] [PMID: 26517730]
[178]
Senshu, T.; Sato, T.; Inoue, T.; Akiyama, K.; Asaga, H. Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Anal. Biochem., 1992, 203(1), 94-100.
[http://dx.doi.org/10.1016/0003-2697(92)90047-B] [PMID: 1524220]
[179]
Moelants, E.A.V.; Van Damme, J.; Proost, P. Detection and quantification of citrullinated chemokines. PLoS One, 2011, 6(12), e28976.
[http://dx.doi.org/10.1371/journal.pone.0028976] [PMID: 22194966]
[180]
Zurzolo, C.; Rodriguez-Boulan, E. Lipid tagged proteins. Curr. Topic Membr., 1994, 1994, 295-318.
[http://dx.doi.org/10.1016/S0070-2161(08)60985-5]
[181]
Ji, Y.; Leymarie, N.; Haeussler, D.J.; Bachschmid, M.M.; Costello, C.E.; Lin, C. Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem., 2013, 85(24), 11952-11959.
[http://dx.doi.org/10.1021/ac402850s] [PMID: 24279456]
[182]
Tewari, R.; West, S.J.; Shayahati, B.; Akimzhanov, A.M. Detection of Protein S-Acylation using Acyl-Resin Assisted Capture. J. Vis. Exp., 2020, 2020(158)
[http://dx.doi.org/10.3791/61016-v] [PMID: 32338654]
[183]
Brigidi, G.S.; Bamji, S.X. Detection of protein palmitoylation in cultured hippocampal neurons by immunoprecipitation and acyl-biotin exchange (ABE). J. Vis. Exp., 2013, 2013(72), 50031.
[http://dx.doi.org/10.3791/50031] [PMID: 23438969]
[184]
Blanc, M.; David, F.; Abrami, L.; Migliozzi, D.; Armand, F.; Bürgi, J.; van der Goot, F.G. SwissPalm: Protein Palmitoylation database. F1000 Res., 2015, 4, 261.
[http://dx.doi.org/10.12688/f1000research.6464.1] [PMID: 26339475]
[185]
Bos, J.; Muir, T.W. A Chemical Probe for Protein Crotonylation. J. Am. Chem. Soc., 2018, 140(14), 4757-4760.
[http://dx.doi.org/10.1021/jacs.7b13141] [PMID: 29584949]
[186]
Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; Lu, Z.; Ye, Z.; Zhu, Q.; Wysocka, J.; Ye, Y.; Khochbin, S.; Ren, B.; Zhao, Y. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6), 1016-1028.
[http://dx.doi.org/10.1016/j.cell.2011.08.008] [PMID: 21925322]
[187]
Chen, Y.Z.; Wang, Z.Z.; Wang, Y.; Ying, G.; Chen, Z.; Song, J. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning. Brief. Bioinform., 2021, 22(6), bbab146.
[http://dx.doi.org/10.1093/bib/bbab146] [PMID: 34002774]
[188]
Gamcsik, M.P.; Kasibhatla, M.S.; Teeter, S.D.; Colvin, O.M. Glutathione levels in human tumors. Biomarkers, 2012, 17(8), 671-691.
[http://dx.doi.org/10.3109/1354750X.2012.715672] [PMID: 22900535]
[189]
Pastore, A.; Piemonte, F. Protein glutathionylation in cardiovascular diseases. Int. J. Mol. Sci., 2013, 14(10), 20845-20876.
[http://dx.doi.org/10.3390/ijms141020845] [PMID: 24141185]
[190]
Holstein, E.; Dittmann, A.; Kääriäinen, A.; Pesola, V.; Koivunen, J.; Pihlajaniemi, T.; Naba, A.; Izzi, V. The Burden of Post-Translational Modification (PTM)—Disrupting Mutations in the Tumor Matrisome. Cancers (Basel), 2021, 13(5), 1081.
[http://dx.doi.org/10.3390/cancers13051081] [PMID: 33802493]
[191]
Charpentier, E.; Doudna, J.A. Rewriting a genome. Nature, 2013, 495(7439), 50-51.
[http://dx.doi.org/10.1038/495050a] [PMID: 23467164]
[192]
Allemailem, K.S.; Alsahli, M.A.; Almatroudi, A.; Alrumaihi, F.; Alkhaleefah, F.K.; Rahmani, A.H.; Khan, A.A. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun. (Lond.), 2022, 42(12), 1257-1287.
[http://dx.doi.org/10.1002/cac2.12366] [PMID: 36209487]
[193]
Fukuda, I.; Ito, A.; Hirai, G.; Nishimura, S.; Kawasaki, H.; Saitoh, H.; Kimura, K.; Sodeoka, M.; Yoshida, M. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol., 2009, 16(2), 133-140.
[http://dx.doi.org/10.1016/j.chembiol.2009.01.009] [PMID: 19246003]
[194]
Yuzwa, S.A.; Macauley, M.S.; Heinonen, J.E.; Shan, X.; Dennis, R.J.; He, Y.; Whitworth, G.E.; Stubbs, K.A.; McEachern, E.J.; Davies, G.J.; Vocadlo, D.J. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol., 2008, 4(8), 483-490.
[http://dx.doi.org/10.1038/nchembio.96] [PMID: 18587388]
[195]
Drew, R.; Miners, J.O. The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem. Pharmacol., 1984, 33(19), 2989-2994.
[http://dx.doi.org/10.1016/0006-2952(84)90598-7] [PMID: 6148944]
[196]
Best, S.; Lam, V.; Liu, T.; Bruss, N.; Kittai, A.; Danilova, O.V.; Murray, S.; Berger, A.; Pennock, N.D.; Lind, E.F.; Danilov, A.V. Immunomodulatory effects of pevonedistat, a NEDD8-activating enzyme inhibitor, in chronic lymphocytic leukemia-derived T cells. Leukemia, 2021, 35(1), 156-168.
[http://dx.doi.org/10.1038/s41375-020-0794-0] [PMID: 32203139]
[197]
Pritzker, L.B.; Moscarello, M.A. A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1998, 1388(1), 154-160.
[http://dx.doi.org/10.1016/S0167-4838(98)00175-7] [PMID: 9774721]
[198]
Dekker, F.J.; Hedberg, C. Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling. Bioorg. Med. Chem., 2011, 19(4), 1376-1380.
[http://dx.doi.org/10.1016/j.bmc.2010.11.025] [PMID: 21129981]
[199]
Zhang, Z.; Zhang, J.; Tian, J.; Li, H. A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1). J. Nanobiotechnology, 2021, 19(1), 323.
[http://dx.doi.org/10.1186/s12951-021-01063-4] [PMID: 34654435]
[200]
Katayama, H.; Kobayashi, M.; Irajizad, E.; Sevillano, A.M.; Patel, N.; Mao, X.; Rusling, L.; Vykoukal, J.; Cai, Y.; Hsiao, F.; Yu, C.Y.; Long, J.; Liu, J.; Esteva, F.; Fahrmann, J.; Hanash, S. Protein citrullination as a source of cancer neoantigens. J. Immunother. Cancer, 2021, 9(6), e002549.
[http://dx.doi.org/10.1136/jitc-2021-002549] [PMID: 34112737]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy