Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics

Author(s): Priyanka Arora, Manaswini Behera, Shubhini A. Saraf and Rahul Shukla*

Volume 30, Issue 28, 2024

Published on: 13 June, 2024

Page: [2187 - 2205] Pages: 19

DOI: 10.2174/0113816128308066240529121148

Price: $65

Abstract

Over the period of the preceding decade, artificial intelligence (AI) has proved an outstanding performance in entire dimensions of science including pharmaceutical sciences. AI uses the concept of machine learning (ML), deep learning (DL), and neural networks (NNs) approaches for novel algorithm and hypothesis development by training the machines in multiple ways. AI-based drug development from molecule identification to clinical approval tremendously reduces the cost of development and the time over conventional methods. The COVID-19 vaccine development and approval by regulatory agencies within 1-2 years is the finest example of drug development. Hence, AI is fast becoming a boon for scientific researchers to streamline their advanced discoveries. AI-based FDA-approved nanomedicines perform well as target selective, synergistic therapies, recolonize the theragnostic pharmaceutical stream, and significantly improve drug research outcomes. This comprehensive review delves into the fundamental aspects of AI along with its applications in the realm of pharmaceutical life sciences. It explores AI's role in crucial areas such as drug designing, drug discovery and development, traditional Chinese medicine, integration of multi-omics data, as well as investigations into drug repurposing and polypharmacology studies.

Next »
[1]
Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci 2015; 104(11): 3612-38.
[http://dx.doi.org/10.1002/jps.24594] [PMID: 26280993]
[2]
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[3]
Parvatikar PP, Patil S, Khaparkhuntikar K, et al. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antiviral Res 2023; 220: 105740.
[http://dx.doi.org/10.1016/j.antiviral.2023.105740] [PMID: 37935248]
[4]
Fortune business insights. Available from: https://www.fortunebusinessinsights.com/
[5]
Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning: An artificial intelligence concept. J Vasc Interv Radiol 2018; 29(6): 850-857.e1.
[http://dx.doi.org/10.1016/j.jvir.2018.01.769] [PMID: 29548875]
[6]
Rizzo A, Ricci AD, Brandi G. Systemic adjuvant treatment in hepatocellular carcinoma: Tempted to do something rather than nothing. Future Oncol 2020; 16(32): 2587-9.
[http://dx.doi.org/10.2217/fon-2020-0669] [PMID: 32772560]
[7]
Rizzo A, Brandi G. Neoadjuvant therapy for cholangiocarcinoma: A comprehensive literature review. Cancer Treat Res Commun 2021; 27: 100354.
[http://dx.doi.org/10.1016/j.ctarc.2021.100354] [PMID: 33756174]
[8]
Yang CM, Shu J. Cholangiocarcinoma evaluation via imaging and artificial intelligence. Oncology 2021; 99(2): 72-83.
[http://dx.doi.org/10.1159/000507449] [PMID: 33147583]
[9]
Geevarghese R, Bodard S, Razakamanantsoa L, et al. Interventional oncology: 2024 update. Can Assoc Radiol J 2024; 08465371241236152.
[http://dx.doi.org/10.1177/08465371241236152] [PMID: 38444144]
[10]
Prelaj A, Miskovic V, Zanitti M, et al. Artificial intelligence for predictive biomarker discovery in immuno-oncology: A systematic review. Ann Oncol 2024; 35(1): 29-65.
[http://dx.doi.org/10.1016/j.annonc.2023.10.125] [PMID: 37879443]
[11]
Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov Today 2017; 22(11): 1680-5.
[http://dx.doi.org/10.1016/j.drudis.2017.08.010] [PMID: 28881183]
[12]
Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discov Today 2019; 24(3): 773-80.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[13]
Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today 2018; 23(6): 1241-50.
[http://dx.doi.org/10.1016/j.drudis.2018.01.039] [PMID: 29366762]
[14]
Zhavoronkov A, Vanhaelen Q, Oprea TI. Will artificial intelligence for drug discovery impact clinical pharmacology? Clin Pharmacol Ther 2020; 107(4): 780-5.
[http://dx.doi.org/10.1002/cpt.1795] [PMID: 31957003]
[15]
Raschka S, Kaufman B. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods 2020; 180: 89-110.
[http://dx.doi.org/10.1016/j.ymeth.2020.06.016] [PMID: 32645448]
[16]
Grys BT, Lo DS, Sahin N, et al. Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol 2017; 216(1): 65-71.
[http://dx.doi.org/10.1083/jcb.201610026] [PMID: 27940887]
[17]
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: General overview. Korean J Radiol 2017; 18(4): 570-84.
[http://dx.doi.org/10.3348/kjr.2017.18.4.570] [PMID: 28670152]
[18]
Kiriiri GK, Njogu PM, Mwangi AN. Exploring different approaches to improve the success of drug discovery and development projects: A review. Fut J Pharmac Sci 2020; 6(1): 27.
[http://dx.doi.org/10.1186/s43094-020-00047-9]
[19]
Sinha S, Vohora D. Drug Discovery and Development. Pharmaceutical Medicine and Translational Clinical Research. Elsevier 2018; pp. 19-32.
[http://dx.doi.org/10.1016/B978-0-12-802103-3.00002-X]
[20]
Deng J, Yang Z, Ojima I, Samaras D, Wang F. Artificial intelligence in drug discovery: Applications and techniques. arXiv: 210600538 2021. Available from: http://arxiv.org/abs/2106.05386
[21]
Yuan Y, Pei J, Lai L. LigBuilder 2: A practical de novo drug design approach. J Chem Inf Model 2011; 51(5): 1083-91.
[http://dx.doi.org/10.1021/ci100350u] [PMID: 21513346]
[22]
Kalyane D, Sanap G, Paul D, et al. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. The Future of Pharmaceutical Product Development and Research. Elsevier 2020; pp. 73-107.
[http://dx.doi.org/10.1016/B978-0-12-814455-8.00003-7]
[23]
Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 2013; 53(7): 1563-75.
[http://dx.doi.org/10.1021/ci400187y] [PMID: 23795551]
[24]
Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 2019; 119(18): 10520-94.
[http://dx.doi.org/10.1021/acs.chemrev.8b00728] [PMID: 31294972]
[25]
Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr Drug Discov Technol 2017; 14(4): 244-54.
[http://dx.doi.org/10.2174/1570163814666170404160911] [PMID: 28382857]
[26]
Chai S, Liu Q, Liang X, et al. A grand product design model for crystallization solvent design. Comput Chem Eng 2020; 135: 106764.
[http://dx.doi.org/10.1016/j.compchemeng.2020.106764]
[27]
Dara S, Dhamercherla S, Jadav SS, Babu CHM, Ahsan MJ. Machine learning in drug discovery: A review. Artif Intell Rev 2022; 55(3): 1947-99.
[http://dx.doi.org/10.1007/s10462-021-10058-4] [PMID: 34393317]
[28]
Talevi A, Morales JF, Hather G, et al. Machine learning in drug discovery and development part 1: A primer. CPT Pharmacometrics Syst Pharmacol 2020; 9(3): 129-42.
[http://dx.doi.org/10.1002/psp4.12491] [PMID: 31905263]
[29]
van Gerven M, Bohte S. Editorial: Artificial neural networks as models of neural information processing. Front Comput Neurosci 2017; 11: 114.
[http://dx.doi.org/10.3389/fncom.2017.00114] [PMID: 29311884]
[30]
Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm 2016; 13(5): 1445-54.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00982] [PMID: 27007977]
[31]
El-Attar NE, Hassan MK, Alghamdi OA, Awad WA. Deep learning model for classification and bioactivity prediction of essential oil-producing plants from Egypt. Sci Rep 2020; 10(1): 21349.
[http://dx.doi.org/10.1038/s41598-020-78449-1] [PMID: 33288845]
[32]
Maltarollo VG, Kronenberger T, Espinoza GZ, Oliveira PR, Honorio KM. Advances with support vector machines for novel drug discovery. Expert Opin Drug Discov 2019; 14(1): 23-33.
[http://dx.doi.org/10.1080/17460441.2019.1549033] [PMID: 30488731]
[33]
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 2015; 55(2): 263-74.
[http://dx.doi.org/10.1021/ci500747n] [PMID: 25635324]
[34]
Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018; 559(7715): 547-55.
[http://dx.doi.org/10.1038/s41586-018-0337-2] [PMID: 30046072]
[35]
Putin E, Asadulaev A, Ivanenkov Y, et al. Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model 2018; 58(6): 1194-204.
[http://dx.doi.org/10.1021/acs.jcim.7b00690] [PMID: 29762023]
[36]
Zhao L, Ciallella HL, Aleksunes LM, Zhu H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov Today 2020; 25(9): 1624-38.
[http://dx.doi.org/10.1016/j.drudis.2020.07.005] [PMID: 32663517]
[37]
Shen M, Xiao Y, Golbraikh A, Gombar VK, Tropsha A. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J Med Chem 2003; 46(14): 3013-20.
[http://dx.doi.org/10.1021/jm020491t] [PMID: 12825940]
[38]
Lavecchia A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov Today 2015; 20(3): 318-31.
[http://dx.doi.org/10.1016/j.drudis.2014.10.012] [PMID: 25448759]
[39]
Howe TJ, Mahieu G, Marichal P, Tabruyn T, Vugts P. Data reduction and representation in drug discovery. Drug Discov Today 2007; 12(1-2): 45-53.
[http://dx.doi.org/10.1016/j.drudis.2006.10.014] [PMID: 17198972]
[40]
Madugula SS, John L, Nagamani S, Gaur AS, Poroikov VV, Sastry GN. Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing. Comput Biol Med 2021; 138: 104856.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104856] [PMID: 34555571]
[41]
Maniyar DM, Nabney IT, Williams BS, Sewing A. Data visualization during the early stages of drug discovery. J Chem Inf Model 2006; 46(4): 1806-18.
[http://dx.doi.org/10.1021/ci050471a] [PMID: 16859312]
[42]
Blanco-González A, Cabezón A, Seco-González A, et al. The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals 2023; 16(6): 891.
[http://dx.doi.org/10.3390/ph16060891]
[43]
Klein K, Koch O, Kriege N, Mutzel P, Schäfer T. Visual analysis of biological activity data with scaffold hunter. Mol Inform 2013; 32(11-12): 964-75.
[http://dx.doi.org/10.1002/minf.201300087] [PMID: 27481142]
[44]
Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: Collection of open natural products database. J Cheminform 2021; 13(1): 2.
[http://dx.doi.org/10.1186/s13321-020-00478-9] [PMID: 33423696]
[45]
Li X, Tang Q, Meng F, Du P, Chen W. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine. Comput Struct Biotechnol J 2022; 20: 1345-51.
[http://dx.doi.org/10.1016/j.csbj.2022.03.006] [PMID: 35356545]
[46]
Mendez D, Gaulton A, Bento AP, et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res 2019; 47(D1): D930-40.
[http://dx.doi.org/10.1093/nar/gky1075] [PMID: 30398643]
[47]
Bento AP, Hersey A, Félix E, et al. An open source chemical structure curation pipeline using RDKit. J Cheminform 2020; 12(1): 51.
[http://dx.doi.org/10.1186/s13321-020-00456-1] [PMID: 33431044]
[48]
Cao Y, Charisi A, Cheng LC, Jiang T, Girke T. ChemmineR: A compound mining framework for R. Bioinformatics 2008; 24(15): 1733-4.
[http://dx.doi.org/10.1093/bioinformatics/btn307] [PMID: 18596077]
[49]
Grisoni F, Ballabio D, Todeschini R, Consonni V. Molecular descriptors for structure-activity applications: A hands-on approach. Methods Mol Biol 2018; 1800: 3-53.
[50]
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6.
[http://dx.doi.org/10.1021/ci00057a005]
[51]
Capecchi A, Probst D, Reymond JL. One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome. J Cheminform 2020; 12(1): 43.
[http://dx.doi.org/10.1186/s13321-020-00445-4] [PMID: 33431010]
[52]
Matter H, Pötter T. Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets. J Chem Inf Comput Sci 1999; 39(6): 1211-25.
[http://dx.doi.org/10.1021/ci980185h]
[53]
Yin S, Proctor EA, Lugovskoy AA, Dokholyan NV. Fast screening of protein surfaces using geometric invariant fingerprints. Proc Natl Acad Sci 2009; 106(39): 16622-6.
[http://dx.doi.org/10.1073/pnas.0906146106] [PMID: 19805347]
[54]
Chan HCS, Wang J, Palczewski K, et al. Exploring a new ligand binding site of G protein-coupled receptors. Chem Sci 2018; 9(31): 6480-9.
[http://dx.doi.org/10.1039/C8SC01680A] [PMID: 30310578]
[55]
Yang Z, Lasker K, Schneidman-Duhovny D, et al. UCSF Chimera, MODELLER, and IMP: An integrated modeling system. J Struct Biol 2012; 179(3): 269-78.
[http://dx.doi.org/10.1016/j.jsb.2011.09.006] [PMID: 21963794]
[56]
Cavasotto CN, Phatak SS. Homology modeling in drug discovery: Current trends and applications. Drug Discov Today 2009; 14(13-14): 676-83.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[57]
Hayik SA, Dunbrack R Jr, Merz KM Jr. Mixed quantum mechanics/molecular mechanics scoring function to predict protein−ligand binding affinity. J Chem Theory Comput 2010; 6(10): 3079-91.
[http://dx.doi.org/10.1021/ct100315g] [PMID: 21221417]
[58]
Wang M, Mei Y, Ryde U. Predicting relative binding affinity using nonequilibrium QM/MM simulations. J Chem Theory Comput 2018; 14(12): 6613-22.
[http://dx.doi.org/10.1021/acs.jctc.8b00685] [PMID: 30362750]
[59]
Smith JS, Isayev O, Roitberg AE. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 2017; 8(4): 3192-203.
[http://dx.doi.org/10.1039/C6SC05720A] [PMID: 28507695]
[60]
Ryde U. QM/MM calculations on proteins. Methods Enzymol 2016; 577: 119-58.
[61]
Zhang YJ, Khorshidi A, Kastlunger G, Peterson AA. The potential for machine learning in hybrid QM/MM calculations. J Chem Phys 2018; 148(24): 241740.
[http://dx.doi.org/10.1063/1.5029879] [PMID: 29960374]
[62]
Faber FA, Lindmaa A, von Lilienfeld OA, Armiento R. Machine learning energies of 2 million elpasolite (ABC2D6) Crystals. Phys Rev Lett 2016; 117(13): 135502.
[http://dx.doi.org/10.1103/PhysRevLett.117.135502] [PMID: 27715098]
[63]
Mouchlis VD, Afantitis A, Serra A, et al. Advances in de novo drug design: From conventional to machine learning methods. Int J Mol Sci 2021; 22(4): 1676.
[http://dx.doi.org/10.3390/ijms22041676] [PMID: 33562347]
[64]
Keserű GM, Makara GM. Hit discovery and hit-to-lead approaches. Drug Discov Today 2006; 11(15-16): 741-8.
[http://dx.doi.org/10.1016/j.drudis.2006.06.016] [PMID: 16846802]
[65]
Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv 2018; 4(7): eaap7885.
[http://dx.doi.org/10.1126/sciadv.aap7885] [PMID: 30050984]
[66]
Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 2018; 4(2): 268-76.
[http://dx.doi.org/10.1021/acscentsci.7b00572] [PMID: 29532027]
[67]
Li Y, Zhang J, Zhao R, et al. Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy. Opt Mater 2018; 79: 33-7.
[http://dx.doi.org/10.1016/j.optmat.2018.03.022]
[68]
Mercado R, Rastemo T, Lindelöf E, et al. Graph networks for molecular design. Mach Learn Sci Technol 2021; 2(2): 025023.
[http://dx.doi.org/10.1088/2632-2153/abcf91]
[69]
Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: Important considerations when developing novel drug delivery platforms. Expert Opin Drug Deliv 2019; 16(11): 1259-75.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[70]
Luo M, Feng Y, Wang T, Guan J. Micro/nanorobots at work in active drug delivery. Adv Funct Mater 2018; 28(25): 1706100.
[http://dx.doi.org/10.1002/adfm.201706100]
[71]
Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 2019; 151-152: 169-90.
[http://dx.doi.org/10.1016/j.addr.2019.05.001] [PMID: 31071378]
[72]
Fletcher M, Biglarbegian M, Neethirajan S. Intelligent system design for bionanorobots in drug delivery. Cancer Nanotechnol 2013; 4(4-5): 117-25.
[http://dx.doi.org/10.1007/s12645-013-0044-5] [PMID: 26069507]
[73]
Fu J, Yan H. Controlled drug release by a nanorobot. Nat Biotechnol 2012; 30(5): 407-8.
[http://dx.doi.org/10.1038/nbt.2206] [PMID: 22565965]
[74]
Singh I, Kaur J, Kaur S, Barik BR, Pahwa R. Artificial neural networks and neuro-fuzzy models: Applications in pharmaceutical product development. Braz Arch Biol Technol 2023; 66: e23210769.
[http://dx.doi.org/10.1590/1678-4324-2023210769]
[75]
Patel S, Shah S. Artificial intelligence: Comprehensive overview and its pharma application. Asian J Pharma Technol 2022; 337-48.
[76]
Wilson B, Km G. Artificial intelligence and related technologies enabled nanomedicine for advanced cancer treatment. Nanomedicine 2020; 15(5): 433-5.
[http://dx.doi.org/10.2217/nnm-2019-0366] [PMID: 31997697]
[77]
Sacha GM, Varona P. Artificial intelligence in nanotechnology. Nanotechnology 2013; 24(45): 452002.
[http://dx.doi.org/10.1088/0957-4484/24/45/452002] [PMID: 24121558]
[78]
Li Y, Abbaspour MR, Grootendorst PV, Rauth AM, Wu XY. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. Eur J Pharm Biopharm 2015; 94: 170-9.
[http://dx.doi.org/10.1016/j.ejpb.2015.04.028] [PMID: 25986587]
[79]
Muñiz Castro B, Elbadawi M, Ong JJ, et al. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021; 337: 530-45.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.046] [PMID: 34339755]
[80]
Chen W, Liu X, Zhang S, Chen S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol Ther Nucleic Acids 2023; 31: 691-702.
[http://dx.doi.org/10.1016/j.omtn.2023.02.019] [PMID: 36923950]
[81]
Mehta CH, Narayan R, Nayak UY. Computational modeling for formulation design. Drug Discov Today 2019; 24(3): 781-8.
[http://dx.doi.org/10.1016/j.drudis.2018.11.018] [PMID: 30502513]
[82]
Tsigelny IF. Artificial intelligence in drug combination therapy. Brief Bioinform 2019; 20(4): 1434-48.
[http://dx.doi.org/10.1093/bib/bby004] [PMID: 29438494]
[83]
Calzolari D, Bruschi S, Coquin L, et al. Search algorithms as a framework for the optimization of drug combinations. PLOS Comput Biol 2008; 4(12): e1000249.
[http://dx.doi.org/10.1371/journal.pcbi.1000249] [PMID: 19112483]
[84]
Moumné L, Marie AC, Crouvezier N. Oligonucleotide therapeutics: From discovery and development to patentability. Pharmaceutics 2022; 14(2): 260.
[http://dx.doi.org/10.3390/pharmaceutics14020260] [PMID: 35213992]
[85]
Dar SA, Gupta AK, Thakur A, Kumar M. SMEpred workbench: A web server for predicting efficacy of chemicallymodified siRNAs. RNA Biol 2016; 13(11): 1144-51.
[http://dx.doi.org/10.1080/15476286.2016.1229733] [PMID: 27603513]
[86]
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol Divers 2021; 25(3): 1315-60.
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[87]
Álvarez-Machancoses Ó, Fernández-Martínez JL. Using artificial intelligence methods to speed up drug discovery. Expert Opin Drug Discov 2019; 14(8): 769-77.
[http://dx.doi.org/10.1080/17460441.2019.1621284] [PMID: 31140873]
[88]
Huang Z, Juarez JM, Li X. Data mining for biomedicine and healthcare. J Healthc Eng 2017; 2017: 1-2.
[http://dx.doi.org/10.1155/2017/7107629] [PMID: 29065638]
[89]
Zhang Y, Zhang G, Shang Q. Computer-aided clinical trial recruitment based on domain-specific language translation: A case study of retinopathy of prematurity. J Healthcare Eng 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/7862672] [PMID: 29065644]
[90]
Seddon G, Lounnas V, McGuire R, et al. Drug design for ever, from hype to hope. J Comput Aided Mol Des 2012; 26(1): 137-50.
[http://dx.doi.org/10.1007/s10822-011-9519-9] [PMID: 22252446]
[91]
Wang Q, Feng Y, Huang J, Wang T, Cheng G. A novel framework for the identification of drug target proteins: Combining stacked auto-encoders with a biased support vector machine. PLoS One 2017; 12(4): e0176486.
[http://dx.doi.org/10.1371/journal.pone.0176486] [PMID: 28453576]
[92]
Ferrero E, Dunham I, Sanseau P. In silico prediction of novel therapeutic targets using gene–disease association data. J Transl Med 2017; 15(1): 182.
[http://dx.doi.org/10.1186/s12967-017-1285-6] [PMID: 28851378]
[93]
Bakkar N, Kovalik T, Lorenzini I, et al. Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135(2): 227-47.
[http://dx.doi.org/10.1007/s00401-017-1785-8] [PMID: 29134320]
[94]
Ho CWL, Soon D, Caals K, Kapur J. Governance of automated image analysis and artificial intelligence analytics in healthcare. Clin Radiol 2019; 74(5): 329-37.
[http://dx.doi.org/10.1016/j.crad.2019.02.005] [PMID: 30898383]
[95]
Zhou LQ, Wang JY, Yu SY, et al. Artificial intelligence in medical imaging of the liver. World J Gastroenterol 2019; 25(6): 672-82.
[http://dx.doi.org/10.3748/wjg.v25.i6.672] [PMID: 30783371]
[96]
Nitta N, Sugimura T, Isozaki A, et al. Intelligent image activated cell sorting. Cell 2018; 175(1): 266-276.e13.
[http://dx.doi.org/10.1016/j.cell.2018.08.028] [PMID: 30166209]
[97]
Tripathy RK, Mahanta S, Paul S. Artificial intelligence based classification of breast cancer using cellular images. RSC Advances 2014; 4(18): 9349.
[http://dx.doi.org/10.1039/c3ra47489e]
[98]
Samui P, Kothari DP. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci Iran 2011; 18(1): 53-8.
[http://dx.doi.org/10.1016/j.scient.2011.03.007]
[99]
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 2019; 40(8): 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[100]
Reymond JL, van Deursen R, Blum LC, Ruddigkeit L. Chemical space as a source for new drugs. MedChemComm 2010; 1(1): 30.
[http://dx.doi.org/10.1039/c0md00020e]
[101]
Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018; 555(7698): 604-10.
[http://dx.doi.org/10.1038/nature25978] [PMID: 29595767]
[102]
Panapitiya G, Girard M, Hollas A, et al. Evaluation of deep learning architectures for aqueous solubility prediction. ACS Omega 2022; 7(18): 15695-710.
[http://dx.doi.org/10.1021/acsomega.2c00642] [PMID: 35571767]
[103]
Ye Z, Ouyang D. Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms. J Cheminform 2021; 13(1): 98.
[http://dx.doi.org/10.1186/s13321-021-00575-3] [PMID: 34895323]
[104]
Lovrić M, Pavlović K, Žuvela P, et al. Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability? J Chemometr 2021; 35(7-8): e3349.
[http://dx.doi.org/10.1002/cem.3349]
[105]
He Y, Liew CY, Sharma N, Woo SK, Chau YT, Yap CW. PaDEL-DDPredictor: Open-source software for PD-PK-T prediction. J Comput Chem 2013; 34(7): 604-10.
[http://dx.doi.org/10.1002/jcc.23173] [PMID: 23114987]
[106]
Agüero-Chapin G, Galpert-Cañizares D, Domínguez-Pérez D, et al. Emerging computational approaches for antimicrobial peptide discovery. Antibiotics 2022; 11(7): 936.
[http://dx.doi.org/10.3390/antibiotics11070936] [PMID: 35884190]
[107]
Dossetter AG. A statistical analysis of in vitro human microsomal metabolic stability of small phenyl group substituents, leading to improved design sets for parallel SAR exploration of a chemical series. Bioorg Med Chem 2010; 18(12): 4405-14.
[http://dx.doi.org/10.1016/j.bmc.2010.04.077] [PMID: 20510621]
[108]
Karimi M, Wu D, Wang Z, Shen Y. DeepAffinity: Interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 2019; 35(18): 3329-38.
[http://dx.doi.org/10.1093/bioinformatics/btz111] [PMID: 30768156]
[109]
Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell 2020; 181(2): 475-83.
[http://dx.doi.org/10.1016/j.cell.2020.04.001] [PMID: 32302574]
[110]
Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci Alliance 2018; 1(6): e201800098.
[http://dx.doi.org/10.26508/lsa.201800098] [PMID: 30515477]
[111]
Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: Toxicity prediction using deep learning. Front Environ Sci 2016; 3: 5.
[112]
Tian G, Harrison PJ, Sreenivasan AP, Carreras-Puigvert J, Spjuth O. Combining molecular and cell painting image data for mechanism of action prediction. Artif Intellig Life Sci 2023; 3: 100060.
[http://dx.doi.org/10.1016/j.ailsci.2023.100060]
[113]
Rodrigues T, Werner M, Roth J, et al. Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor. Chem Sci 2018; 9(34): 6899-903.
[http://dx.doi.org/10.1039/C8SC02634C] [PMID: 30310622]
[114]
Perez-Gracia JL, Sanmamed MF, Bosch A, et al. Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat Rev 2017; 53: 79-97.
[http://dx.doi.org/10.1016/j.ctrv.2016.12.005] [PMID: 28088073]
[115]
Deliberato RO, Celi LA, Stone DJ. Clinical note creation, binning, and artificial intelligence. JMIR Med Inform 2017; 5(3): e24.
[http://dx.doi.org/10.2196/medinform.7627] [PMID: 28778845]
[116]
Reddy AS, Zhang S. Polypharmacology: Drug discovery for the future. Expert Rev Clin Pharmacol 2013; 6(1): 41-7.
[http://dx.doi.org/10.1586/ecp.12.74] [PMID: 23272792]
[117]
How is Artificial Intelligence Used in Drug Discovery & Development? Available from: https://www.delveinsight.com/blog/artificial-intelligence-in-drug-discovery
[118]
Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug–drug and drug–food interactions. Proc Natl Acad Sci 2018; 115(18): E4304-11.
[http://dx.doi.org/10.1073/pnas.1803294115] [PMID: 29666228]
[119]
Bajpai S, Shreyash N, Sonker M, Gupta V, Tiwary SK, Biswas S. Concept of artificial intelligence in discovering and re-purposing of drugs. 2021.
[http://dx.doi.org/10.20944/preprints202105.0726.v1] [PMID: 2021050726]
[120]
Lenz HJ, Richardson P, Stebbing J. The emergence of baricitinib: A story of tortoises versus hares. Clin Infect Dis 2021; 72(7): 1251-2.
[http://dx.doi.org/10.1093/cid/ciaa940] [PMID: 32901809]
[121]
Stebbing J, Krishnan V, de Bono S, et al. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med 2020; 12(8): e12697.
[http://dx.doi.org/10.15252/emmm.202012697] [PMID: 32473600]
[122]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[123]
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583(7816): 459-68.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[124]
Bocci G, Bradfute SB, Ye C, et al. Virtual and in vitro antiviral screening revive therapeutic drugs for COVID-19. ACS Pharmacol Transl Sci 2020; 3(6): 1278-92.
[http://dx.doi.org/10.1021/acsptsci.0c00131] [PMID: 33330842]
[125]
Liu X, Li Z, Liu S, et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm Sin B 2020; 10(7): 1205-15.
[http://dx.doi.org/10.1016/j.apsb.2020.04.008] [PMID: 32318327]
[126]
Feng S, Luan X, Wang Y, et al. Eltrombopag is a potential target for drug intervention in SARS-CoV-2 spike protein. Infect Genet Evol 2020; 85: 104419.
[http://dx.doi.org/10.1016/j.meegid.2020.104419] [PMID: 32540428]
[127]
Rodriguez S, Hug C, Todorov P, et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat Commun 2021; 12(1): 1033.
[http://dx.doi.org/10.1038/s41467-021-21330-0] [PMID: 33589615]
[128]
Leroy K, Yilmaz Z, Brion JP. Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 2007; 33(1): 43-55.
[http://dx.doi.org/10.1111/j.1365-2990.2006.00795.x] [PMID: 17239007]
[129]
Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 1997; 56(1): 70-8.
[http://dx.doi.org/10.1097/00005072-199701000-00007] [PMID: 8990130]
[130]
Ly PTT, Wu Y, Zou H, et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 2013; 123(1): 224-35.
[http://dx.doi.org/10.1172/JCI64516] [PMID: 23202730]
[131]
Vignaux PA, Minerali E, Foil DH, Puhl AC, Ekins S. Machine learning for discovery of GSK3β inhibitors. ACS Omega 2020; 5(41): 26551-61.
[http://dx.doi.org/10.1021/acsomega.0c03302] [PMID: 33110983]
[132]
Urbina F, Puhl AC, Ekins S. Recent advances in drug repurposing using machine learning. Curr Opin Chem Biol 2021; 65: 74-84.
[http://dx.doi.org/10.1016/j.cbpa.2021.06.001] [PMID: 34274565]
[133]
Jin Y, Ren X, Yu L, et al. TMR modern herbal medicine artificial intelligence for the development and implementation guidelines for traditional Chinese medicine and integrated traditional Chinese and western medicine. 2021.
[134]
Yu T, Li J, Yu Q, et al. Knowledge graph for TCM health preservation: Design, construction, and applications. Artif Intell Med 2017; 77: 48-52.
[http://dx.doi.org/10.1016/j.artmed.2017.04.001] [PMID: 28545611]
[135]
Flores JE, Claborne DM, Weller ZD, Webb-Robertson B-JM, Waters KM, Bramer LM. Missing data in multi-omics integration: Recent advances through artificial intelligence. Front Artif Intell 2023; 6: 1098308.
[136]
Tong L, Shi W, Isgut M, et al. Integrating multi-omics data with EHR for precision medicine using advanced artificial intelligence. IEEE Rev Biomed Eng 2024; 17: 80-97.
[http://dx.doi.org/10.1109/RBME.2023.3324264] [PMID: 37824325]
[137]
How Artificial Intelligence is Revolutionizing Drug Discovery. Available from: https://blog.petrieflom.law.harvard.edu/ 2023/03/20/how-artificial-intelligence-is-revolutionizing-drug-discovery/
[138]
Tripathi N, Goshisht MK, Sahu SK, Arora C. Applications of artificial intelligence to drug design and discovery in the big data era: A comprehensive review. Mol Divers 2021; 25(3): 1643-64.
[http://dx.doi.org/10.1007/s11030-021-10237-z] [PMID: 34110579]
[139]
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017; 60(6): 84-90.
[http://dx.doi.org/10.1145/3065386]
[140]
Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019; 18(6): 463-77.
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[141]
Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries. Mol Divers 2022; 26(3): 1893-913.
[http://dx.doi.org/10.1007/s11030-021-10326-z] [PMID: 34686947]
[142]
Dwivedi YK, Hughes L, Ismagilova E, et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int J Inf Manage 2021; 57: 101994.
[http://dx.doi.org/10.1016/j.ijinfomgt.2019.08.002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy