Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Roles of MDA-LDL/OX-LDL/LOX-1 and TNF-α/TLR4/NF-κB Signaling Pathways in Myocardial Damage by Implantations of Cardiac Pacemakers in Elderly Patients

Author(s): Xia Li, Wenhang Zhou, Dianxuan Guo*, Youdong Hu, Hualan Zhou and Ying Chen

Volume 22, Issue 4, 2024

Published on: 12 June, 2024

Page: [251 - 265] Pages: 15

DOI: 10.2174/0115701611260215231221072709

Price: $65

Abstract

Introduction: Permanent pacemakers are an established treatment for sick sinus syndrome and high-grade atrioventricular block. Permanent cardiac pacemaker implantations may damage the myocardium.

Objective: This study evaluated markers of myocardial injury, oxidative stress and inflammation in elderly patients with permanent pacemaker implantations.

Methods: Various markers were measured at 1, 2, 3 and 4 months after permanent pacemaker implantations in elderly patients.

Results: The levels of high-sensitivity troponin T (hsTnT), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), malondialdehyde-modified low-density lipoprotein (MDA-LDL), oxidized low-density lipoprotein (OX-LDL), tumour necrosis factor-α (TNF-α), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) were increased in 2-month group compared with control and 1- month groups (P<0.001), and were further increased at 4-month group compared with 2- and 3- month groups after pacemaker implantations (P<0.001). Patients with dual-chamber pacemakers had higher levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB than patients with single chamber pacemakers (P<0.001). Patients who underwent the pacemakers with the active fixation leads had raised levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB compared patients with pacemakers using the passive fixation leads (P<0.001). Myocardial blood flows in 3-month and 4-month groups were lower than 1-month and 2-month groups (P<0.001).

Conclusion: Levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB were elevated in elderly patients with permanent pacemaker implantations and the activations of oxidative stress and pro-inflammatory signalling pathways may be associated with myocardial damages and ischemia after pacemaker implantations in elderly patients.

Graphical Abstract

[1]
Akodad M, Roubille F, Marin G, et al. Myocardial injury after balloon predilatation versus direct transcatheter aortic valve replacement: Insights from the DIRECTAVI trial. J Am Heart Assoc 2020; 9(24): e018405.
[http://dx.doi.org/10.1161/JAHA.120.018405] [PMID: 33297821]
[2]
Varvarousis D, Goulas N, Polytarchou K, et al. Biomarkers of myocardial injury and inflammation after permanent pacemaker implantation: The lead fixation type effect. J Atr Fibrillation 2018; 10(6): 1798.
[http://dx.doi.org/10.4022/jafib.1798] [PMID: 29988295]
[3]
Zhang Y, Tocchetti CG, Krieg T, Moens AL. Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic Biol Med 2012; 53(8): 1531-40.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.010] [PMID: 22819981]
[4]
Aimo A, Castiglione V, Borrelli C, et al. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol 2020; 27(5): 494-510.
[http://dx.doi.org/10.1177/2047487319870344] [PMID: 31412712]
[5]
Pizzini A, Burkert F, Theurl I, Weiss G, Bellmann-Weiler R. Prognostic impact of high sensitive Troponin T in patients with influenza virus infection: A retrospective analysis. Heart Lung 2020; 49(1): 105-9.
[http://dx.doi.org/10.1016/j.hrtlng.2019.05.009] [PMID: 31146968]
[6]
Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem 2019; 26(9): 1693-700.
[http://dx.doi.org/10.2174/0929867325666180508100950] [PMID: 29737246]
[7]
Akhmedov A, Bonetti NR, Reiner MF, et al. Deleterious role of endothelial lectin-like oxidized low-density lipoprotein receptor-1 in ischaemia/reperfusion cerebral injury. J Cereb Blood Flow Metab 2019; 39(11): 2233-45.
[http://dx.doi.org/10.1177/0271678X18793266] [PMID: 30073881]
[8]
Hou JS, Wang CH, Lai YH, et al. Serum malondialdehyde-modified low-density lipoprotein is a risk factor for central arterial stiffness in maintenance hemodialysis patients. Nutrients 2020; 12(7): 2160.
[http://dx.doi.org/10.3390/nu12072160] [PMID: 32708072]
[9]
Pandey SS, Hartley A, Caga-Anan M, et al. A novel immunoassay for malondialdehyde-conjugated low-density lipoprotein measures dynamic changes in the blood of patients undergoing coronary artery bypass graft surgery. Antioxidants 2021; 10(8): 1298.
[http://dx.doi.org/10.3390/antiox10081298] [PMID: 34439546]
[10]
Li C, Cai C, Zheng X, Sun J, Ye L. Orientin suppresses oxidized low-density lipoproteins induced inflammation and oxidative stress of macrophages in atherosclerosis. Biosci Biotechnol Biochem 2020; 84(4): 774-9.
[http://dx.doi.org/10.1080/09168451.2019.1702871] [PMID: 31829093]
[11]
Zhou S, Sun Y, Zhao K, et al. miR 21/PTEN pathway mediates the cardioprotection of geniposide against oxidized low density lipoprotein induced endothelial injury via suppressing oxidative stress and inflammatory response. Int J Mol Med 2020; 45(5): 1305-16.
[http://dx.doi.org/10.3892/ijmm.2020.4520] [PMID: 32323738]
[12]
Kim NY, Trinh NT, Ahn SG, Kim SA. Cinnamaldehyde protects against oxidative stress and inhibits the TNF α induced inflammatory response in human umbilical vein endothelial cells. Int J Mol Med 2020; 46(1): 449-57.
[http://dx.doi.org/10.3892/ijmm.2020.4582] [PMID: 32319555]
[13]
Cunningham MW, Jayaram A, Deer E, et al. Tumor necrosis factor alpha (TNF-α) blockade improves natural killer cell (NK) activation, hypertension, and mitochondrial oxidative stress in a preclinical rat model of preeclampsia. Hypertens Pregnancy 2020; 39(4): 399-404.
[http://dx.doi.org/10.1080/10641955.2020.1793999] [PMID: 32646252]
[14]
Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Involvement of Toll-like receptor 4 in neutrophil-mediated inflammation, oxidative stress and tissue damage induced by scorpion venom. Inflammation 2020; 43(1): 155-67.
[http://dx.doi.org/10.1007/s10753-019-01105-y] [PMID: 31654297]
[15]
Li GZ, Deng JF, Qi YZ, Liu R, Liu ZX. COLEC12 regulates apoptosis of osteosarcoma through toll‐like receptor 4–activated inflammation. J Clin Lab Anal 2020; 34(11): e23469.
[http://dx.doi.org/10.1002/jcla.23469] [PMID: 32822099]
[16]
Kunnumakkara AB, Shabnam B, Girisa S, et al. Inflammation, NF-κB, and chronic diseases: How are they linked? Crit Rev Immunol 2020; 40(1): 1-39.
[http://dx.doi.org/10.1615/CritRevImmunol.2020033210] [PMID: 32421977]
[17]
Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J. Nuclear factor kappa B signaling complexes in acute inflammation. Antioxid Redox Signal 2020; 33(3): 145-65.
[http://dx.doi.org/10.1089/ars.2019.7975] [PMID: 31856585]
[18]
Wang J, Chen HW, Fang XM, Qian PY, Ding GL, Xu ML. Myocardial CT perfusion imaging and atherosclerotic plaque characteristics on coronary CT angiography for the identification of myocardial ischaemia. Clin Radiol 2019; 74(10): 763-8.
[http://dx.doi.org/10.1016/j.crad.2019.04.026] [PMID: 31239108]
[19]
Bagate F, Masi P, d’Humières T, et al. Advanced echocardiographic phenotyping of critically ill patients with coronavirus-19 sepsis: A prospective cohort study. J Intensive Care 2021; 9(1): 12.
[http://dx.doi.org/10.1186/s40560-020-00516-6] [PMID: 33472693]
[20]
Zhao Z, Xu Y, Li S, Guo J, Yi T, Chen L. Higher serum lectin-like oxidized low-density lipoprotein receptor-1 in patients with stable coronary artery disease is associated with major adverse cardiovascular events: A multicentre pilot study. Biochem Med 2019; 29(1): 84-93.
[http://dx.doi.org/10.11613/BM.2019.010705] [PMID: 30799974]
[21]
Vázquez CMP, Costa JO, Bomfim LGS, et al. Oxidized low-density lipoprotein (Ox-LDL) and triggering receptor-expressed myeloid cell (TREM-1) levels are associated with cardiometabolic risk in nonobese, clinically healthy, and young adults. Oxid Med Cell Longev 2019; 2019: 1-8.
[http://dx.doi.org/10.1155/2019/7306867] [PMID: 30944697]
[22]
Kang E, Kim S, Lee HJ, Park I, Kim H, Shin GT. Tumor necrosis factor α is a risk factor for infection in peritoneal dialysis patients. Korean J Intern Med 2016; 31(4): 722-9.
[http://dx.doi.org/10.3904/kjim.2015.230] [PMID: 27000486]
[23]
Kan M, Song L, Zhang X, Zhang J, Fang P. Circulating high mobility group box-1 and toll-like receptor 4 expressions increase the risk and severity of epilepsy. Braz J Med Biol Res 2019; 52(7): e7374.
[http://dx.doi.org/10.1590/1414-431x20197374] [PMID: 31241711]
[24]
Uysal P, Simsek G, Durmus S, et al. Evaluation of plasma antimicrobial peptide LL-37 and nuclear factor-kappaB levels in stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14: 321-30.
[http://dx.doi.org/10.2147/COPD.S185602] [PMID: 30774329]
[25]
Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 2012; 366(17): 1577-85.
[http://dx.doi.org/10.1056/NEJMoa1200111] [PMID: 22449317]
[26]
Kusiak A, Maj A, Cichońska D, Kochańska B, Cydejko A, Świetlik D. The analysis of the frequency of leukoplakia in reference of tobacco smoking among northern polish population. Int J Environ Res Public Health 2020; 17(18): 6919.
[http://dx.doi.org/10.3390/ijerph17186919] [PMID: 32971842]
[27]
Patel N, Majeed F, Sule AA. Seizure triggered by sick sinus syndrome. BMJ Case Rep 2017; 2017: bcr-2017-222011.
[http://dx.doi.org/10.1136/bcr-2017-222011] [PMID: 29103011]
[28]
Kaplan RM, Yadlapati A, Cantey EP, et al. Conduction recovery following pacemaker implantation after transcatheter aortic valve replacement. Pacing Clin Electrophysiol 2019; 42(2): 146-52.
[http://dx.doi.org/10.1111/pace.13579] [PMID: 30548869]
[29]
Lavikainen P, Koponen M, Taipale H, et al. Length of hospital stay for hip fracture and 30-day mortality in people with Alzheimer’s disease: A cohort study in finland. J Gerontol A Biol Sci Med Sci 2020; 75(11): 2184-92.
[http://dx.doi.org/10.1093/gerona/glaa199] [PMID: 32797165]
[30]
Sheth S, Fares M, Kikano S, Snyder C, Dodgen A, Wilhelm CM. Appropriate use of echocardiography for palpitations in paediatric cardiology clinics. Cardiol Young 2021; 31(1): 60-2.
[http://dx.doi.org/10.1017/S104795112000325X] [PMID: 33023695]
[31]
Zielinski MR, Systrom DM, Rose NR. Fatigue, sleep, and autoimmune and related disorders. Front Immunol 2019; 10: 1827.
[http://dx.doi.org/10.3389/fimmu.2019.01827] [PMID: 31447842]
[32]
Wu DJ, Dong HC, Tang TN, Zhu SF. Acupressure for insomnia. Medicine 2018; 97(45): e13180.
[http://dx.doi.org/10.1097/MD.0000000000013180] [PMID: 30407352]
[33]
Guo Y, Jia P, Chen Y, et al. PHLDA1 is a new therapeutic target of oxidative stress and ischemia reperfusion-induced myocardial injury. Life Sci 2020; 245: 117347.
[http://dx.doi.org/10.1016/j.lfs.2020.117347] [PMID: 31981628]
[34]
Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 2019; 307: 41-8.
[http://dx.doi.org/10.1016/j.toxlet.2019.02.013] [PMID: 30817977]
[35]
Xu R, Zhang F, Chai R, et al. Exosomes derived from pro‐inflammatory bone marrow‐derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med 2019; 23(11): 7617-31.
[http://dx.doi.org/10.1111/jcmm.14635] [PMID: 31557396]
[36]
Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells 2020; 10(1): 51.
[http://dx.doi.org/10.3390/cells10010051] [PMID: 33396359]
[37]
Blažek P, Ferri-Certić J, Vražić H, et al. Pacemaker implantation associated myocardial micro-damage: A randomised comparison between active and passive fixation leads. Sci Rep 2018; 8(1): 4870.
[http://dx.doi.org/10.1038/s41598-018-23209-5] [PMID: 29559697]
[38]
Chandra N, Hiremath N, Moten S. Unusual cause of tamponade secondary to pericardial injury from chronic pacemaker lead protrusion. ANZ J Surg 2020; 90(6): 1208-9.
[http://dx.doi.org/10.1111/ans.15533] [PMID: 31674104]
[39]
Hiraya D, Sato A, Hoshi T, Sakai S, Watabe H, Ieda M. Additional effect of coronary high-intensity plaque on T1-weighted magnetic resonance imaging with circulating malondialdehyde-modified low-density lipoprotein on cardiac events. Circ J 2021; 85(11): 2032-9.
[http://dx.doi.org/10.1253/circj.CJ-21-0220] [PMID: 34275962]
[40]
Cheng XL, Ding F, Wang DP, Zhou L, Cao JM. Hexarelin attenuates atherosclerosis via inhibiting LOX-1-NF-κB signaling pathway-mediated macrophage ox-LDL uptake in ApoE-/- mice. Peptides 2019; 121: 170122.
[http://dx.doi.org/10.1016/j.peptides.2019.170122] [PMID: 31386895]
[41]
Zusso M, Lunardi V, Franceschini D, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation 2019; 16(1): 148.
[http://dx.doi.org/10.1186/s12974-019-1538-9] [PMID: 31319868]
[42]
Xu X, Piao HN, Aosai F, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF‐κB and TNF‐α/TNFR1/NF‐κB pathways. Br J Pharmacol 2020; 177(22): 5224-45.
[http://dx.doi.org/10.1111/bph.15261] [PMID: 32964428]
[43]
Luo H, He J, Qin L, et al. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response. Clin Exp Immunol 2020; 203(1): 66-79.
[http://dx.doi.org/10.1111/cei.13510] [PMID: 32894580]
[44]
Virella G, Wilson K, Elkes J, et al. Immune complexes containing malondialdehyde (MDA) LDL induce apoptosis in human macrophages. Clin Immunol 2018; 187: 1-9.
[http://dx.doi.org/10.1016/j.clim.2017.06.010] [PMID: 28689783]
[45]
Fang H, Bo T, Zi X, et al. Sophocarpine exert protective effect against ox-LDL-induced endothelial damage via regulating NF-κB signaling pathway. Biosci Biotechnol Biochem 2020; 84(10): 2104-12.
[http://dx.doi.org/10.1080/09168451.2020.1787813] [PMID: 32594853]
[46]
Ge X, Zhang DM, Li MM, et al. Microglial LOX-1/MAPKs/NF-κB positive loop promotes the vicious cycle of neuroinflammation and neural injury. Int Immunopharmacol 2019; 70: 187-200.
[http://dx.doi.org/10.1016/j.intimp.2019.02.013] [PMID: 30807932]
[47]
Sun J, Li X, Jiao K, Zhai Z, Sun D. Albiflorin inhibits the formation of THP-1-derived foam cells through the LOX-1/NF-κB pathway. Minerva Med 2019; 110(2): 107-14.
[http://dx.doi.org/10.23736/S0026-4806.18.05711-7] [PMID: 30371044]
[48]
Ma S, Bai Z, Wu H, Wang W. The DPP-4 inhibitor saxagliptin ameliorates ox-LDL-induced endothelial dysfunction by regulating AP-1 and NF-κB. Eur J Pharmacol 2019; 851: 186-93.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.008] [PMID: 30639312]
[49]
Zhu L, Gong X, Gong J, et al. Notoginsenoside R1 upregulates miR-221-3p expression to alleviate ox-LDL-induced apoptosis, inflammation, and oxidative stress by inhibiting the TLR4/NF-κB pathway in HUVECs. Braz J Med Biol Res 2020; 53(6): e9346.
[http://dx.doi.org/10.1590/1414-431x20209346] [PMID: 32401923]
[50]
Moura FA, Goulart MOF, Campos SBG, da Paz Martins AS. The close interplay of nitro-oxidative stress, advanced glycation end products and inflammation in inflammatory bowel diseases. Curr Med Chem 2020; 27(13): 2059-76.
[http://dx.doi.org/10.2174/0929867325666180904115633] [PMID: 30182837]
[51]
Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[52]
Venkataraman K, Khurana S, Tai T. Oxidative stress in aging-matters of the heart and mind. Int J Mol Sci 2013; 14(9): 17897-925.
[http://dx.doi.org/10.3390/ijms140917897] [PMID: 24002027]
[53]
Liu Z, Yao X, Jiang W, et al. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 2020; 17(1): 90.
[http://dx.doi.org/10.1186/s12974-020-01751-2] [PMID: 32192500]
[54]
Mitrea DR, Malkey R, Florian TL, et al. Daily oral administration of chlorogenic acid prevents the experimental carrageenan-induced oxidative stress. J Physiol Pharmacol 2020; 71(1): 55-65.
[http://dx.doi.org/10.26402/jpp.2020.1.04] [PMID: 32350149]
[55]
Wiebe N, Muntner P, Tonelli M. Associations of body mass index, fasting insulin, and inflammation with mortality: A prospective cohort study. Int J Obes 2022; 46(12): 2107-13.
[http://dx.doi.org/10.1038/s41366-022-01211-2] [PMID: 36030344]
[56]
Badran M, Laher I. Waterpipe (shisha, hookah) smoking, oxidative stress and hidden disease potential. Redox Biol 2020; 34: 101455.
[http://dx.doi.org/10.1016/j.redox.2020.101455] [PMID: 32086009]
[57]
Liao MT, Chen CK, Lin TT, Cheng LY, Ting HW, Liu YB. High-sensitivity c-reactive protein is a predictor of subsequent atrial high-rate episodes in patients with pacemakers and preserved ejection fraction. J Clin Med 2020; 9(11): 3677.
[http://dx.doi.org/10.3390/jcm9113677] [PMID: 33207668]
[58]
Kaplinski M, Cuneo BF. Novel approaches to the surveillance and management of fetuses at risk for anti-Ro/SSA mediated atrioventricular block. Semin Perinatol 2022; 46(4): 151585.
[http://dx.doi.org/10.1016/j.semperi.2022.151585] [PMID: 35410713]
[59]
He Q, Sawada M, Yamasaki N, et al. Neuroinflammation, oxidative stress, and neurogenesis in a mouse model of chronic fatigue syndrome, and the treatment with Kampo medicine. Biol Pharm Bull 2020; 43(1): 110-5.
[http://dx.doi.org/10.1248/bpb.b19-00616] [PMID: 31902915]
[60]
Yeung WF, Yu BYM, Yuen JWM, et al. Semi-individualized acupuncture for insomnia disorder and oxidative stress: A randomized, double-blind, sham-controlled trial. Nat Sci Sleep 2021; 13: 1195-207.
[http://dx.doi.org/10.2147/NSS.S318874] [PMID: 34321944]
[61]
Biesbroek PS, Beek AM, Germans T, Niessen HWM, van Rossum AC. Diagnosis of myocarditis: Current state and future perspectives. Int J Cardiol 2015; 191: 211-9.
[http://dx.doi.org/10.1016/j.ijcard.2015.05.008] [PMID: 25974197]
[62]
Hong H, Lyu IJ. Pediatric trochleitis associated with paranasal sinusitis: A case report. BMC Ophthalmol 2019; 19(1): 16.
[http://dx.doi.org/10.1186/s12886-019-1030-4] [PMID: 30642284]
[63]
DePace NL, Colombo J. Long-COVID syndrome and the cardiovascular system: A review of neurocardiologic effects on multiple systems. Curr Cardiol Rep 2022; 24(11): 1711-26.
[http://dx.doi.org/10.1007/s11886-022-01786-2] [PMID: 36178611]
[64]
Esposito S, Principi N, Azzari C, et al. Italian intersociety consensus on management of long covid in children. Ital J Pediatr 2022; 48(1): 42.
[http://dx.doi.org/10.1186/s13052-022-01233-6] [PMID: 35264214]
[65]
Mascia G, Perrotta L, Galanti G, Padeletti L. Atrial fibrillation in athletes. Int J Sports Med 2012; 34(5): 379-84.
[http://dx.doi.org/10.1055/s-0032-1321896] [PMID: 23041967]
[66]
Resál T, Farkas K, Molnár T. Iron deficiency anemia in inflammatory bowel disease: What do we know? Front Med 2021; 8: 686778.
[http://dx.doi.org/10.3389/fmed.2021.686778] [PMID: 34277663]
[67]
Chaaban N, Kshatriya S. Ya. Myocarditis on 18FDG-PET imaging. Radiol Case Rep 2022; 17(6): 2120-2.
[http://dx.doi.org/10.1016/j.radcr.2022.03.074] [PMID: 35464795]
[68]
Lugo GA, Nizami H, Haniff F, et al. Possible Long-term cardiovascular effects of COVID-19. Curr Cardiol Rev 2023; 19(2): e160822207545.
[http://dx.doi.org/10.2174/1573403X18666220816143549] [PMID: 35975854]
[69]
Feng L, Ning R, Liu J, et al. Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction. J Hazard Mater 2020; 391: 122206.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122206] [PMID: 32036317]
[70]
Suetomi T, Miyamoto S, Brown JH. Inflammation in nonischemic heart disease: Initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. Am J Physiol Heart Circ Physiol 2019; 317(5): H877-90.
[http://dx.doi.org/10.1152/ajpheart.00223.2019] [PMID: 31441689]
[71]
Yoneyama K, Akashi YJ. Myocardial contractile function recovery, systemic inflammation, and prognosis in takotsubo syndrome. Circ J 2021; 85(10): 1832-3.
[http://dx.doi.org/10.1253/circj.CJ-21-0322] [PMID: 34039835]
[72]
Bengel FM, Ross TL. Emerging imaging targets for infiltrative cardiomyopathy: Inflammation and fibrosis. J Nucl Cardiol 2019; 26(1): 208-16.
[http://dx.doi.org/10.1007/s12350-018-1356-y] [PMID: 29968156]
[73]
Yang L, Ma J, Tan Y, et al. Cardiac‐specific overexpression of metallothionein attenuates L‐NAME‐induced myocardial contractile anomalies and apoptosis. J Cell Mol Med 2019; 23(7): 4640-52.
[http://dx.doi.org/10.1111/jcmm.14375] [PMID: 31104354]
[74]
Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22(1): 37.
[http://dx.doi.org/10.1186/s12933-023-01755-1] [PMID: 36804872]
[75]
Niermann C, Gorressen S, Klier M, et al. Oligophrenin1 protects mice against myocardial ischemia and reperfusion injury by modulating inflammation and myocardial apoptosis. Cell Signal 2016; 28(8): 967-78.
[http://dx.doi.org/10.1016/j.cellsig.2016.04.008] [PMID: 27117132]
[76]
Glasenapp A, Derlin K, Wang Y, et al. Multimodality imaging of inflammation and ventricular remodeling in pressure-overload heart failure. J Nucl Med 2020; 61(4): 590-6.
[http://dx.doi.org/10.2967/jnumed.119.232488] [PMID: 31653713]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy