Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

An Overview of Pyridazinone Analogs: Chemical and Pharmacological Potential

In Press, (this is not the final "Version of Record"). Available online 07 June, 2024
Author(s): Youness Boukharsa*, Khalid Karrouchi, Houda Attjioui and M'Hammed Ansar
Published on: 07 June, 2024

DOI: 10.2174/0113895575287746240528072330

Price: $95

Abstract

Pyridazinones are classical molecules that occupy an important place in heterocyclic chemistry, and since their discovery, they have been widely developed. The introduction of new functional groups into pyridazinone structures has enabled the synthesis of a large diversity of compounds. The pharmacological and agrochemical importance of pyridazinone derivatives has aroused the interest of chemists and directed their research toward the synthesis of new compounds with the aim of improving their biological effectiveness. In this review, we have compiled and discussed the different synthetic routes, reactivity, and pharmacological and agrochemical applications of the pyridazinone ring.

[1]
Abubshait, S. An efficient synthesis and reactions of novel indolylpyridazinone derivatives with expected biological activity. Molecules, 2007, 12(1), 25-42.
[http://dx.doi.org/10.3390/12010025] [PMID: 17693951]
[2]
Boukharsa, Y.; Meddah, B.; Tiendrebeogo, R.Y.; Ibrahimi, A.; Taoufik, J.; Cherrah, Y.; Benomar, A.; Faouzi, M.E.A.; Ansar, M. Synthesis and antidepressant activity of 5-(benzo[b]furan-2-ylmethyl)-6-methylpyridazin-3(2H)-one derivatives. Med. Chem. Res., 2016, 25(3), 494-500.
[http://dx.doi.org/10.1007/s00044-015-1490-x]
[3]
Thoer, A.; Denis, G.; Delmas, M.; Gaset, A. The Reimer-Tiemann reaction in slightly hydrated solid-liquid medium: A new method for the synthesis of formyl and diformyl phenols. Synth. Commun., 1988, 18(16-17), 2095-2101.
[http://dx.doi.org/10.1080/00397918808068278]
[4]
Hirota, T.; Fujita, H.; Sasaki, K.; Namba, T. A novel synthesis of benzofuran and related compounds. III. The vilsmeier reaction of phenoxyacetaldehyde diethyl acetals. J. Heterocycl. Chem., 1986, 23(6), 1715-1716.
[http://dx.doi.org/10.1002/jhet.5570230622]
[5]
Benmoussa, A. Synthesis and antimicrobial properties of some pyridazin-3-thiones derivatives. Int. J. Pharm. Tech. Res., 2012, 4(4), 1591-1594.
[6]
Selvakumar, P.; Thennarasu, S.; Mandal, A.B. Synthesis of novel pyridopyridazin-3 (2H)-one derivatives and evaluation of their cytotoxic activity against MCF-7 cells. ISRN Med. Chem., 2014, 20, 1-7.
[7]
Murty, M.S.R.; Rao, B.R.; Ram, K.R.; Yadav, J.S.; Antony, J.; Anto, R.J. Synthesis and preliminary evaluation activity studies of novel 4-(aryl/heteroaryl-2-ylmethyl)-6-phenyl-2-[3-(4-substituted-piperazine-1-yl)propyl]pyridazin-3(2H)-one derivatives as anticancer agents. Med. Chem. Res., 2012, 21(10), 3161-3169.
[http://dx.doi.org/10.1007/s00044-011-9851-6]
[8]
Al-Tel, T.H. Design and synthesis of novel tetrahydro-2H-Pyrano[3,2-c]Pyridazin-3(6H)-one derivatives as potential anticancer agents. Eur. J. Med. Chem., 2010, 45(12), 5724-5731.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.029] [PMID: 20884086]
[9]
Al-Zaydi, K.M.; Borik, R.M.; Mekheimer, R.A.; Elnagdi, M.H. Green chemistry: A facile synthesis of polyfunctionally substituted thieno[3,4-c]pyridinones and thieno[3,4-d]pyridazinones under neat reaction conditions. Ultrason. Sonochem., 2010, 17(5), 909-915.
[http://dx.doi.org/10.1016/j.ultsonch.2009.12.008] [PMID: 20064736]
[10]
Gao, Q.; Zhu, Y.; Lian, M.; Liu, M.; Yuan, J.; Yin, G.; Wu, A. Unexpected C-C bond cleavage: A route to 3,6-diarylpyridazines and 6-arylpyridazin-3-ones from 1,3-dicarbonyl compounds and methyl ketones. J. Org. Chem., 2012, 77(21), 9865-9870.
[http://dx.doi.org/10.1021/jo301751e] [PMID: 23061884]
[11]
Koza, G.; Keskin, S.; Özer, M.S.; Cengiz, B.; Şahin, E.; Balci, M. Facile synthesis of novel 7-aminofuro- and 7-aminothieno[2,3-d]pyridazin-4(5H)-one and 4-aminophthalazin-1(2H)-ones. Tetrahedron, 2013, 69(1), 395-409.
[http://dx.doi.org/10.1016/j.tet.2012.10.010]
[12]
Trécourt, F.; Turck, A.; Plé, N.; Paris, A.; Quéguiner, G. A new route to 5,6‐diarylpyridazin‐3‐ones by metalation and cross‐coupling of pyridazines. J. Heterocycl. Chem., 1995, 32(3), 1057-1062.
[http://dx.doi.org/10.1002/jhet.5570320364]
[13]
Kappe, T. Synthesis and chemistry of pyridazines functionalized in position 3 and 5 with heteroatoms. J. Heterocycl. Chem., 1998, 35(5), 1111-1122.
[http://dx.doi.org/10.1002/jhet.5570350510]
[14]
Johnston, K.A.; Allcock, R.W.; Jiang, Z.; Collier, I.D.; Blakli, H.; Rosair, G.M.; Bailey, P.D.; Morgan, K.M.; Kohno, Y.; Adams, D.R. Concise routes to pyrazolo[1,5-a]pyridin-3-yl pyridazin-3-ones. Org. Biomol. Chem., 2008, 6(1), 175-186.
[http://dx.doi.org/10.1039/B713638B] [PMID: 18075664]
[15]
Helm, M.D.; Plant, A.; Harrity, J.P.A. A novel approach to functionalised pyridazinone arrays. Org. Biomol. Chem., 2006, 4(23), 4278-4280.
[http://dx.doi.org/10.1039/b613223e] [PMID: 17102871]
[16]
Ferrigno, F.; Branca, D.; Kinzel, O.; Lillini, S.; Llauger Bufi, L.; Monteagudo, E.; Muraglia, E.; Rowley, M.; Schultz-Fademrecht, C.; Toniatti, C.; Torrisi, C.; Jones, P. Development of substituted 6-[4-fluoro-3-(piperazin-1-ylcarbonyl)benzyl]-4,5-dimethylpyridazin-3(2H)-ones as potent poly(ADP–ribose) polymerase-1 (PARP-1) inhibitors active in BRCA deficient cells. Bioorg. Med. Chem. Lett., 2010, 20(3), 1100-1105.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.087] [PMID: 20022747]
[17]
Abouzid, K.; Abdel Hakeem, M.; Khalil, O.; Maklad, Y. Pyridazinone derivatives: Design, synthesis, and in vitro vasorelaxant activity. Bioorg. Med. Chem., 2008, 16(1), 382-389.
[http://dx.doi.org/10.1016/j.bmc.2007.09.031] [PMID: 17905589]
[18]
Siddiqui, A.A.; Mishra, R.; Shaharyar, M.; Husain, A.; Rashid, M.; Pal, P. Triazole incorporated pyridazinones as a new class of antihypertensive agents: Design, synthesis and in vivo screening. Bioorg. Med. Chem. Lett., 2011, 21(3), 1023-1026.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.028] [PMID: 21211966]
[19]
Rathish, I.G.; Javed, K.; Ahmad, S.; Bano, S.; Alam, M.S.; Akhter, M.; Pillai, K.K.; Ovais, S.; Samim, M. Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3(2H)-ones. Eur. J. Med. Chem., 2012, 49, 304-309.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.026] [PMID: 22305543]
[20]
Zare, L.; Mahmoodi, N.O.; Yahyazadeh, A.; Nikpassand, M. Ultrasound-promoted regio and chemoselective synthesis of pyridazinones and phthalazinones catalyzed by ionic liquid [bmim]Br/AlCl3. Ultrason. Sonochem., 2012, 19(4), 740-744.
[http://dx.doi.org/10.1016/j.ultsonch.2011.11.008] [PMID: 22306425]
[21]
Zare, L.; Mahmoodi, N.O.; Yahyazadeh, A.; Mamaghani, M.; Tabatabaeian, K. An efficient chemo- and regioselective three-component synthesis of pyridazinones and phthalazinones using activated KSF. Chin. Chem. Lett., 2010, 21(5), 538-541.
[http://dx.doi.org/10.1016/j.cclet.2009.11.032]
[22]
Baraldi, P.G.; Bigoni, A.; Cacciari, B.; Caldari, C.; Manfredini, S.; Spalluto, G. Nitrile Oxide [3 + 2] cycloaddition: Application to the synthesis of 6-substituted 3(2 H)-pyridazinones and 6-substituted 4,5-dihydro-4-hydroxy-3(2 H)-pyridazinones. Synthesis, 1994, 1994(11), 1158-1162.
[http://dx.doi.org/10.1055/s-1994-25663]
[23]
Taoufik, J.; Couquelet, J.D.; Couquelet, J.M.; Carpy, A. Stereospecific synthesis of new 5‐substituted 6‐methyl‐4,5‐dihydro‐2 H ‐pyridazin‐3‐ones. X‐ray assignment study. J. Heterocycl. Chem., 1984, 21(2), 305-310.
[http://dx.doi.org/10.1002/jhet.5570210207]
[24]
Ibrahim, H.; Behbehani, H. Synthesis of a new class of Pyridazin-3-one and 2-amino-5-arylazopyridine derivatives and their utility in the synthesis of fused azines. Molecules, 2014, 19(2), 2637-2654.
[http://dx.doi.org/10.3390/molecules19022637] [PMID: 24566327]
[25]
Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. First synthesis of 4,5-dihydro-3(2H)-pyridazinones via Zn-mediated hydrohydrazination. Tetrahedron Lett., 2008, 49(31), 4607-4609.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.084]
[26]
Stepakov, A.V.; Kinzhalov, M.A.; Boitsov, V.M.; Stepakova, L.V.; Starova, G.L.; Vyazmin, S.Y.; Grinenko, E.V. A new approach to the synthesis of 4-(N-aryl)carbamoylmethyl-4,5-dihydropyridazin-3(2H)-ones. Tetrahedron Lett., 2011, 52(24), 3146-3149.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.038]
[27]
Mahmoodi, N.O.; Safari, N.; Sharifzadeh, B. One-pot synthesis of novel 2-(Thiazol-2-yl)-4,5-dihydropyridazin-3(2 H)-one derivatives catalyzed by activated KSF. Synth. Commun., 2014, 44(2), 245-250.
[http://dx.doi.org/10.1080/00397911.2013.801077]
[28]
Soliman, M.; El-Sakka, S. Synthesis of some new 4, 5-dihydro-6-(4-methoxy-3-methylphenyl)-3 (2 H)-pyridazinone derivatives. J. Korean Chem. Soc., 2011, 55(2), 230-234.
[29]
Zhou, G.; Ting, P.C.; Aslanian, R.; Cao, J.; Kim, D.W.; Kuang, R.; Lee, J.F.; Schwerdt, J.; Wu, H.; Jason Herr, R.; Zych, A.J.; Yang, J.; Lam, S.; Wainhaus, S.; Black, T.A.; McNicholas, P.M.; Xu, Y.; Walker, S.S. SAR studies of pyridazinone derivatives as novel glucan synthase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(10), 2890-2893.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.083] [PMID: 21489787]
[30]
Braña, M.F.; Cacho, M.; García, M.L.; Mayoral, E.P.; López, B.; de Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; Muñoz-Mingarro, D.; Lozach, O.; Meijer, L. Pyrazolo[3,4-c]pyridazines as novel and selective inhibitors of cyclin-dependent kinases. J. Med. Chem., 2005, 48(22), 6843-6854.
[http://dx.doi.org/10.1021/jm058013g] [PMID: 16250643]
[31]
Giovannoni, M.P.; Ciciani, G.; Cilibrizzi, A.; Crocetti, L.; Daniele, S.; Di Cesare Mannelli, L.; Ghelardini, C.; Giacomelli, C.; Guerrini, G.; Martini, C.; Trincavelli, M.L.; Vergelli, C. Further studies on pyrazolo[1′,5′:1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones as potent and selective human A1 adenosine receptor antagonists. Eur. J. Med. Chem., 2015, 89, 32-41.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.020] [PMID: 25462223]
[32]
Vergelli, C.; Giovannoni, M.P.; Pieretti, S.; Giannuario, A.D.; Piaz, V.D.; Biagini, P.; Biancalani, C.; Graziano, A.; Cesari, N. 4-Amino-5-vinyl-3(2H)-pyridazinones and analogues as potent antinociceptive agents: Synthesis, SARs, and preliminary studies on the mechanism of action. Bioorg. Med. Chem., 2007, 15(16), 5563-5575.
[http://dx.doi.org/10.1016/j.bmc.2007.05.035] [PMID: 17548197]
[33]
Saddik, R.; Abrigach, F.; Benchat, N.; El Kadiri, S.; Hammouti, B.; Touzani, R. Catecholase activity investigation for pyridazinone- and thiopyridazinone-based ligands. Res. Chem. Intermed., 2012, 38(8), 1987-1998.
[http://dx.doi.org/10.1007/s11164-012-0520-2]
[34]
Boukharsa, Y. Synthesis, α-glucosidase and β-galactosidase inhibitory potentials and molecular docking of some novel benzofuran-pyridazine derivatives. Polycycl. Aromat. Compd., 2022, 1-12.
[35]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[36]
Coelho, A.; Sotelo, E.; Raviña, E. Pyridazine derivatives. Part 33: Sonogashira approaches in the synthesis of 5-substituted-6-phenyl-3(2H)-pyridazinones. Tetrahedron, 2003, 59(14), 2477-2484.
[http://dx.doi.org/10.1016/S0040-4020(03)00263-1]
[37]
Negishi, E.; King, A.O.; Okukado, N. Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides. J. Org. Chem., 1977, 42(10), 1821-1823.
[http://dx.doi.org/10.1021/jo00430a041]
[38]
Verhelst, T.; Liu, Z.; Maes, J.; Maes, B.U.W. Synthesis of (hetero)arylated pyridazin-3(2H)-ones via Negishi reaction involving zincated pyridazin-3(2H)-ones. J. Org. Chem., 2011, 76(23), 9648-9659.
[http://dx.doi.org/10.1021/jo201587j] [PMID: 22017314]
[39]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[40]
Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. Novel and convenient method for the stereo- and regiospecific synthesis of conjugated alkadienes and alkenynes via the palladium-catalyzed cross-coupling reaction of 1-alkenylboranes with bromoalkenes and bromoalkynes. J. Am. Chem. Soc., 1985, 107(4), 972-980.
[http://dx.doi.org/10.1021/ja00290a037]
[41]
Kotha, S.; Lahiri, K.; Kashinath, D. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron, 2002, 58(48), 9633-9695.
[http://dx.doi.org/10.1016/S0040-4020(02)01188-2]
[42]
Riedl, Z.; Maes, B.U.W.; Monsieurs, K.; Lemière, G.L.F.; Mátyus, P.; Hajós, G. Synthesis of new pyridazino[4,5-c]isoquinolinones by Suzuki cross-coupling reaction. Tetrahedron, 2002, 58(28), 5645-5650.
[http://dx.doi.org/10.1016/S0040-4020(02)00531-8]
[43]
Tapolcsányi, P.; Maes, B.U.W.; Monsieurs, K.; Lemière, G.L.F.; Riedl, Z.; Hajós, G.; Van den Driessche, B.; Dommisse, R.A.; Mátyus, P. Synthesis of the dibenzo[f,h]phthalazine and dibenzo[f,h]cinnoline skeleton via a ‘Suzuki–Pd-catalyzed intramolecular arylation’ and a ‘Suzuki–Pschorr’ approach. Tetrahedron, 2003, 59(31), 5919-5926.
[http://dx.doi.org/10.1016/S0040-4020(03)00953-0]
[44]
Qian, W.; Winternheimer, D.; Amegadzie, A.; Allen, J. One-pot synthesis of [1,2,3]triazole-fused pyrazinopyridazindione tricycles by a ‘click and activate’ approach. Tetrahedron Lett., 2012, 53(3), 271-274.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.030]
[45]
Frolov, E.B.; Lakner, F.J.; Khvat, A.V.; Ivachtchenko, A.V. An efficient synthesis of novel 1,3-oxazolo[4,5- d]pyridazinones. Tetrahedron Lett., 2004, 45(24), 4693-4696.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.093]
[46]
Wang, W.; Liang, L.; Xu, F.; Huang, W.; Niu, Y.; Sun, Q.; Xu, P. Ruthenium‐catalyzed switchable N–H/C–H alkenylation of 6‐phenyl(dihydro)pyridazinones with alkynes. Eur. J. Org. Chem., 2014, 2014(31), 6863-6867.
[http://dx.doi.org/10.1002/ejoc.201402986]
[47]
Nagle, P.; Pawar, Y.; Sonawane, A.; Bhosale, S.; More, D. Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents. Med. Chem. Res., 2014, 23(2), 918-926.
[http://dx.doi.org/10.1007/s00044-013-0685-2]
[48]
Tao, M.; Aimone, L.D.; Gruner, J.A.; Mathiasen, J.R.; Huang, Z.; Lyons, J.; Raddatz, R.; Hudkins, R.L. Synthesis and structure–activity relationship of 5-pyridazin-3-one phenoxypiperidines as potent, selective histamine H3 receptor inverse agonists. Bioorg. Med. Chem. Lett., 2012, 22(2), 1073-1077.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.118] [PMID: 22197136]
[49]
Sharma, B.; Verma, A.; Sharma, U.K.; Prajapati, S. Efficient synthesis, anticonvulsant and muscle relaxant activities of new 2-((5-amino-1,3,4-thiadiazol-2-yl)methyl)-6-phenyl-4,5-dihydropyridazin-3(2H)-one derivatives. Med. Chem. Res., 2014, 23(1), 146-157.
[http://dx.doi.org/10.1007/s00044-013-0618-0]
[50]
Saeed, M.M.; Khalil, N.A.; Ahmed, E.M.; Eissa, K.I. Synthesis and anti-inflammatory activity of novel pyridazine and pyridazinone derivatives as non-ulcerogenic agents. Arch. Pharm. Res., 2012, 35(12), 2077-2092.
[http://dx.doi.org/10.1007/s12272-012-1205-5] [PMID: 23263802]
[51]
Pau, A.; Murineddu, G.; Asproni, B.; Murruzzu, C.; Grella, G.; Pinna, G.; Curzu, M.; Marchesi, I.; Bagella, L. Synthesis and cytotoxicity of novel hexahydrothienocycloheptapyridazinone derivatives. Molecules, 2009, 14(9), 3494-3508.
[http://dx.doi.org/10.3390/molecules14093494] [PMID: 19783939]
[52]
Siddiqui, A.A.; Mishra, R.; Shaharyar, M. Synthesis, characterization and antihypertensive activity of pyridazinone derivatives. Eur. J. Med. Chem., 2010, 45(6), 2283-2290.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.003] [PMID: 20189270]
[53]
El-Hashash, M. Synthesis of novel series of phthalazine derivatives with antibacterial and antifungal evaluation. J. Chem. Eng. Process Technol., 2014, 5(195), 2-8.
[54]
Ünsal-Tan, O.; Özden, K.; Rauk, A.; Balkan, A. Synthesis and cyclooxygenase inhibitory activities of some N-acylhydrazone derivatives of isoxazolo[4,5-d]pyridazin-4(5H)-ones. Eur. J. Med. Chem., 2010, 45(6), 2345-2352.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.012] [PMID: 20207453]
[55]
Gökçe, M.; Utku, S.; Küpeli, E. Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal)hydrazone derivatives. Eur. J. Med. Chem., 2009, 44(9), 3760-3764.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.048] [PMID: 19535179]
[56]
Overend, W.G.; Wiggins, L.F. 56. The conversion of sucrose into pyridazine derivatives. Part I. 3-Sulphanilamido-6-methylpyridazine. J. Chem. Soc., 1947, 239-244.
[http://dx.doi.org/10.1039/jr9470000239] [PMID: 20238654]
[57]
Overend, W.G.; Wiggins, L.F. 105. The conversion of sucrose into pyridazine derivatives. Part II. 4-Amino-2-phenyl-6-methyl-3-pyridazone, 4-amino-2-(p-nitrophenyl)-6-methyl-3-pyridazone, and their sulphanilamido-derivatives. J. Chem. Soc., 1947, 549-554.
[http://dx.doi.org/10.1039/jr9470000549] [PMID: 20249761]
[58]
Dorsch, D.; Schadt, O.; Stieber, F.; Meyring, M.; Grädler, U.; Bladt, F.; Friese-Hamim, M.; Knühl, C.; Pehl, U.; Blaukat, A. Identification and optimization of pyridazinones as potent and selective c-Met kinase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(7), 1597-1602.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.002] [PMID: 25736998]
[59]
Zhou, S.; Liao, H.; He, C.; Dou, Y.; Jiang, M.; Ren, L.; Zhao, Y.; Gong, P. Design, synthesis and structure–activity relationships of novel 4-phenoxyquinoline derivatives containing pyridazinone moiety as potential antitumor agents. Eur. J. Med. Chem., 2014, 83, 581-593.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.068] [PMID: 24996144]
[60]
Ahmad, S.; Rathish, I.G.; Bano, S.; Alam, M.S.; Javed, K. Synthesis and biological evaluation of some novel 6-aryl-2-(p-sulfamylphenyl)-4,5-dihydropyridazin-3(2H)-ones as anti-cancer, antimicrobial, and anti-inflammatory agents. J. Enzyme Inhib. Med. Chem., 2010, 25(2), 266-271.
[http://dx.doi.org/10.3109/14756360903155781] [PMID: 20038271]
[61]
Lattmann, E.; Ayuko, W.O.; Kinchinaton, D.; Langley, C.A.; Singh, H.; Karimi, L.; Tisdale, M.J. Synthesis and evaluation of 5-arylated 2(5 H)-furanones and 2-arylated pyridazin-3(2 H)-ones as anti-cancer agents. J. Pharm. Pharmacol., 2010, 55(9), 1259-1265.
[http://dx.doi.org/10.1211/0022357021756] [PMID: 14604469]
[62]
Csókás, D.; Zupkó, I.; Károlyi, B.I.; Drahos, L.; Holczbauer, T.; Palló, A.; Czugler, M.; Csámpai, A. Synthesis, spectroscopy, X-ray analysis and in vitro antiproliferative effect of ferrocenylmethylene-hydrazinylpyridazin-3(2H)-ones and related ferroceno[d]pyridazin-1(2H)-ones. J. Organomet. Chem., 2013, 743, 130-138.
[http://dx.doi.org/10.1016/j.jorganchem.2013.06.040]
[63]
Tiryaki, D.; Sukuroglu, M.; Dogruer, D.S.; Akkol, E.; Ozgen, S.; Sahin, M.F. Synthesis of some new 2,6-disubstituted-3(2H)-pyridazinone derivatives and investigation of their analgesic, anti-inflammatory and antimicrobial activities. Med. Chem. Res., 2013, 22(6), 2553-2560.
[http://dx.doi.org/10.1007/s00044-012-0253-1]
[64]
Ibrahim, H.M.; Behbehani, H.; Elnagdi, M.H. Approaches towards the synthesis of a novel class of 2-amino-5-arylazonicotinate, pyridazinone and pyrido[2,3-d]pyrimidine derivatives as potent antimicrobial agents. Chem. Cent. J., 2013, 7(1), 123.
[http://dx.doi.org/10.1186/1752-153X-7-123] [PMID: 23867062]
[65]
Asif, M.; Singh, A.; Lakshmayya, L. In-vivo anticonvulsant and in-vitro antimycobacterial activities of 6-aryl pyridazine-3(2H)-one derivatives. Am. J. Pharmacol. Sci., 2014, 2(1), 1-6.
[http://dx.doi.org/10.12691/ajps-2-1-1]
[66]
Husain, A.; Ahmad, A.; Bhandari, A.; Ram, V. Synthesis and antitubercular activity of pyridazinone derivatives. J. Chil. Chem. Soc., 2011, 56(3), 778-780.
[http://dx.doi.org/10.4067/S0717-97072011000300013]
[67]
Boukharsa, Y.; Lakhlili, W. El harti, J.; Meddah, B.; Tiendrebeogo, R.Y.; Taoufik, J.; El Abbes Faouzi, M.; Ibrahimi, A.; Ansar, M. Synthesis, anti-inflammatory evaluation in vivo and docking studies of some new 5-(benzo[b]furan-2-ylmethyl)-6-methyl-pyridazin- 3(2H) -one derivatives. J. Mol. Struct., 2018, 1153, 119-127.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.092]
[68]
Özadalı, K.; Özkanlı, F.; Jain, S.; Rao, P.P.N.; Velázquez-Martínez, C.A. Synthesis and biological evaluation of isoxazolo[4,5-d]pyridazin-4-(5H)-one analogues as potent anti-inflammatory agents. Bioorg. Med. Chem., 2012, 20(9), 2912-2922.
[http://dx.doi.org/10.1016/j.bmc.2012.03.021] [PMID: 22475926]
[69]
Bashir, R.; Yaseen, S.; Ovais, S.; Ahmad, S.; Hamid, H.; Alam, M.S.; Samim, M.; Javed, K. Synthesis and biological evaluation of some novel sulfamoylphenyl-pyridazinone as anti-inflammatory agents (Part-II). J. Enzyme Inhib. Med. Chem., 2012, 27(1), 92-96.
[http://dx.doi.org/10.3109/14756366.2011.577036] [PMID: 21612377]
[70]
Abouzid, K.; Bekhit, S.A. Novel anti-inflammatory agents based on pyridazinone scaffold; Design, synthesis and in vivo activity. Bioorg. Med. Chem., 2008, 16(10), 5547-5556.
[http://dx.doi.org/10.1016/j.bmc.2008.04.007] [PMID: 18430576]
[71]
Asif, M. Synthesis and analgesic activity of 6-(M-nitrophenyl)-4-sustituted benzylidene 4,5-dihydropyridazin-3(2h)-one derivatives. Indones. J. Pharm., 2012, 23, 254-258.
[72]
Dogruer, D.S.; Fethi Sahin, M. ünlü, S.; Ito, S. Studies on some 3(2H)-pyridazinone derivatives with antinociceptive activity. Arch. Pharm. (Weinheim), 2000, 333(4), 79-86.
[http://dx.doi.org/10.1002/(SICI)1521-4184(20004)333:4<79::AID-ARDP79>3.0.CO;2-S] [PMID: 10816899]
[73]
Gokçe, M.; Dogruer, D.; Sahin, M.F. Synthesis and antinociceptive activity of 6-substituted-3-pyridazinone derivatives. Farmaco, 2001, 56(3), 233-237.
[http://dx.doi.org/10.1016/S0014-827X(01)01037-0] [PMID: 11409332]
[74]
Nathan, P.J.; Boardley, R.; Scott, N.; Berges, A.; Maruff, P.; Sivananthan, T.; Upton, N.; Lowy, M.T.; Nestor, P.J.; Lai, R. The safety, tolerability, pharmacokinetics and cognitive effects of GSK239512, a selective histamine H3 receptor antagonist in patients with mild to moderate Alzheimer’s disease: A preliminary investigation. Curr. Alzheimer Res., 2013, 10(3), 240-251.
[http://dx.doi.org/10.2174/1567205011310030003] [PMID: 23521503]
[75]
F Egan, M.; Zhao, X.; Gottwald, R.; Harper-Mozley, L.; Zhang, Y.; Snavely, D.; Lines, C.; Michelson, D. Randomized crossover study of the histamine H3 inverse agonist MK-0249 for the treatment of cognitive impairment in patients with schizophrenia. Schizophr. Res., 2013, 146(1-3), 224-230.
[http://dx.doi.org/10.1016/j.schres.2013.02.030] [PMID: 23523692]
[76]
Hudkins, R.L. Discovery and characterization of 6-{4-[3-(R)-2-Methylpyrrolidin-1-yl)propoxy]phenyl}-2H-pyridazin-3-one (CEP-26401, Irdabisant): A potent, selective histamine H3 receptor inverse agonist. J. Med. Chem., 2011, 54(13), 4781-4792.
[http://dx.doi.org/10.1021/jm200401v] [PMID: 21634396]
[77]
Raddatz, R.; Hudkins, R.L.; Mathiasen, J.R.; Gruner, J.A.; Flood, D.G.; Aimone, L.D.; Le, S.; Schaffhauser, H.; Duzic, E.; Gasior, M.; Bozyczko-Coyne, D.; Marino, M.J.; Ator, M.A.; Bacon, E.R.; Mallamo, J.P.; Williams, M. CEP-26401 (irdabisant), a potent and selective histamine H3 receptor antagonist/inverse agonist with cognition-enhancing and wake-promoting activities. J. Pharmacol. Exp. Ther., 2012, 340(1), 124-133.
[http://dx.doi.org/10.1124/jpet.111.186585] [PMID: 22001260]
[78]
Hudkins, R.L.; Josef, K.A.; Becknell, N.C.; Aimone, L.D.; Lyons, J.A.; Mathiasen, J.R.; Gruner, J.A.; Raddatz, R. Discovery of (1R,6S)-5-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one (R,S-4a): Histamine H3 receptor inverse agonist demonstrating potent cognitive enhancing and wake promoting activity. Bioorg. Med. Chem. Lett., 2014, 24(5), 1303-1306.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.061] [PMID: 24513042]
[79]
Becknell, N.C.; Lyons, J.A.; Aimone, L.D.; Huang, Z.; Gruner, J.A.; Raddatz, R.; Hudkins, R.L. Synthesis and evaluation of 4- and 5-pyridazin-3-one phenoxypropylamine analogues as histamine-3 receptor antagonists. Bioorg. Med. Chem., 2012, 20(12), 3880-3886.
[http://dx.doi.org/10.1016/j.bmc.2012.04.028] [PMID: 22578490]
[80]
Josef, K.A.; Aimone, L.D.; Lyons, J.; Raddatz, R.; Hudkins, R.L. Synthesis of constrained benzocinnolinone analogues of CEP-26401 (irdabisant) as potent, selective histamine H3 receptor inverse agonists. Bioorg. Med. Chem. Lett., 2012, 22(12), 4198-4202.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.001] [PMID: 22617490]
[81]
Bacon, E.R. Pyridazinone Derivatives; Google Patents, 2010.
[82]
Dandu, R.; Gruner, J.A.; Mathiasen, J.R.; Aimone, L.D.; Hostetler, G.; Benfield, C.; Bendesky, R.J.; Marcy, V.R.; Raddatz, R.; Hudkins, R.L. Synthesis and evaluation of pyridazinone–phenethylamine derivatives as selective and orally bioavailable histamine H3 receptor antagonists with robust wake-promoting activity. Bioorg. Med. Chem. Lett., 2011, 21(21), 6362-6365.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.104] [PMID: 21944855]
[83]
Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol. Ther., 2006, 109(3), 366-398.
[http://dx.doi.org/10.1016/j.pharmthera.2005.07.003] [PMID: 16102838]
[84]
Brunnée, T.; Engelstätter, R.; Steinijans, V.W.; Kunkel, G. Bronchodilatory effect of inhaled zardaverine, a phosphodiesterase III and IV inhibitor, in patients with asthma. Eur. Respir. J., 1992, 5(8), 982-985.
[http://dx.doi.org/10.1183/09031936.93.05080982] [PMID: 1426207]
[85]
Lawrenz, M.E.; Salter, E.A.; Wierzbicki, A.; Thompson, W.J. Molecular modeling study of binding to the catalytic site of PDE4 enzymes by a novel class of inhibitors. Int. J. Quantum Chem., 2005, 105(4), 410-415.
[http://dx.doi.org/10.1002/qua.20716]
[86]
Van der Mey, M.; Bommelé, K.M.; Boss, H.; Hatzelmann, A.; Van Slingerland, M.; Sterk, G.J.; Timmerman, H. Synthesis and structure-activity relationships of cis-tetrahydrophthalazinone/pyridazinone hybrids: A novel series of potent dual PDE3/PDE4 inhibitory agents. J. Med. Chem., 2003, 46(10), 2008-2016.
[http://dx.doi.org/10.1021/jm030776l] [PMID: 12723963]
[87]
Allcock, R.W.; Blakli, H.; Jiang, Z.; Johnston, K.A.; Morgan, K.M.; Rosair, G.M.; Iwase, K.; Kohno, Y.; Adams, D.R. Phosphodiesterase inhibitors. Part 1: Synthesis and structure–activity relationships of pyrazolopyridine–pyridazinone PDE inhibitors developed from ibudilast. Bioorg. Med. Chem. Lett., 2011, 21(11), 3307-3312.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.021] [PMID: 21530250]
[88]
Ochiai, K.; Ando, N.; Iwase, K.; Kishi, T.; Fukuchi, K.; Ohinata, A.; Zushi, H.; Yasue, T.; Adams, D.R.; Kohno, Y. Phosphodiesterase inhibitors. Part 2: Design, synthesis, and structure–activity relationships of dual PDE3/4-inhibitory pyrazolo[1,5-a]pyridines with anti-inflammatory and bronchodilatory activity. Bioorg. Med. Chem. Lett., 2011, 21(18), 5451-5456.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.118] [PMID: 21764304]
[89]
Ochiai, K.; Takita, S.; Eiraku, T.; Kojima, A.; Iwase, K.; Kishi, T.; Fukuchi, K.; Yasue, T.; Adams, D.R.; Allcock, R.W.; Jiang, Z.; Kohno, Y. Phosphodiesterase inhibitors. Part 3: Design, synthesis and structure–activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-dihydropyridazinones with anti-inflammatory and bronchodilatory activity. Bioorg. Med. Chem., 2012, 20(5), 1644-1658.
[http://dx.doi.org/10.1016/j.bmc.2012.01.033] [PMID: 22336247]
[90]
Ochiai, K.; Takita, S.; Kojima, A.; Eiraku, T.; Ando, N.; Iwase, K.; Kishi, T.; Ohinata, A.; Yageta, Y.; Yasue, T.; Adams, D.R.; Kohno, Y. Phosphodiesterase inhibitors. Part 4: Design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-4,4-dimethylpyrazolones. Bioorg. Med. Chem. Lett., 2012, 22(18), 5833-5838.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.088] [PMID: 22884989]
[91]
Ochiai, K.; Takita, S.; Kojima, A.; Eiraku, T.; Iwase, K.; Kishi, T.; Ohinata, A.; Yageta, Y.; Yasue, T.; Adams, D.R.; Kohno, Y. Phosphodiesterase inhibitors. Part 5: Hybrid PDE3/4 inhibitors as dual bronchorelaxant/anti-inflammatory agents for inhaled administration. Bioorg. Med. Chem. Lett., 2013, 23(1), 375-381.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.121] [PMID: 23200255]
[92]
Chen, J.; Zhang, L.; Guo, H.; Wang, S.; Wang, L.; Ma, L.; Lu, X. Activity prediction of hepatitis C virus NS5B polymerase inhibitors of pyridazinone derivatives. Chemom. Intell. Lab. Syst., 2014, 134, 100-109.
[http://dx.doi.org/10.1016/j.chemolab.2014.03.015]
[93]
Ellis, D.A.; Blazel, J.K.; Webber, S.E.; Tran, C.V.; Dragovich, P.S.; Sun, Z.; Ruebsam, F.; McGuire, H.M.; Xiang, A.X.; Zhao, J.; Li, L.S.; Zhou, Y.; Han, Q.; Kissinger, C.R.; Showalter, R.E.; Lardy, M.; Shah, A.M.; Tsan, M.; Patel, R.; LeBrun, L.A.; Kamran, R.; Bartkowski, D.M.; Nolan, T.G.; Norris, D.A.; Sergeeva, M.V.; Kirkovsky, L. 4-(1,1-Dioxo-1,4-dihydro-1λ6-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-ones as potent inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem. Lett., 2008, 18(16), 4628-4632.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.014] [PMID: 18662878]
[94]
Costas, T.; Costas-Lago, M.C.; Vila, N.; Besada, P.; Cano, E.; Terán, C. New platelet aggregation inhibitors based on pyridazinone moiety. Eur. J. Med. Chem., 2015, 94, 113-122.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.061] [PMID: 25757094]
[95]
Costas, T.; Besada, P.; Piras, A.; Acevedo, L.; Yañez, M.; Orallo, F.; Laguna, R.; Terán, C. New pyridazinone derivatives with vasorelaxant and platelet antiaggregatory activities. Bioorg. Med. Chem. Lett., 2010, 20(22), 6624-6627.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.031] [PMID: 20880705]
[96]
Cignarella, G.; Barlocco, D.; Villa, S.; Curzu, M.M.; Pinna, G.A.; Lavezzo, A.; Bestetti, A. Tricyclic 3-(2H)-pyridazinone derivatives. Synthesis and evaluation of their antisecretory and antiulcer activity. Eur. J. Med. Chem., 1992, 27(8), 819-823.
[http://dx.doi.org/10.1016/0223-5234(92)90116-I]
[97]
Livermore, D.G.H.; Bethell, R.C.; Cammack, N.; Hancock, A.P.; Hann, M.M.; Green, D.V.S.; Lamont, R.B.; Noble, S.A.; Orr, D.C.; Payne, J.J. Synthesis and anti-HIV-1 activity of a series of imidazo[1,5-b]pyridazines. J. Med. Chem., 1993, 36(24), 3784-3794.
[http://dx.doi.org/10.1021/jm00076a005] [PMID: 7504733]
[98]
Wang, T.; Dong, Y.; Wang, L.C.; Xiang, B.R.; Chen, Z.; Qu, L.B. Design, synthesis and structure-activity relationship studies of 6-phenyl-4,5-dihydro-3(2H)-pyridazinone derivatives as cardiotonic agents. Arzneimittelforschung, 2008, 58(11), 569-573.
[PMID: 19137907]
[99]
Robertson, D.W.; Krushinski, J.H.; Utterback, B.G.; Kauffman, R.F. Synthesis of a tritium-labeled indolidan analog and its use as a radioligand for phosphodiesterase-inhibitor cardiotonic binding sites. J. Med. Chem., 1989, 32(7), 1476-1480.
[http://dx.doi.org/10.1021/jm00127a014] [PMID: 2738882]
[100]
El Marrakchi, S. Synthesis and antioxidant properties of some 5-benzyl-6-methylpyridazin-3 (2H)-ones derivatives. J. Chem. Pharm. Res., 2014, 6(11), 70-74.
[101]
Yamalı, C. Synthesis of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives incorporating aminothiazole moiety and investigation of their antioxidant, acetylcholinesterase, and butyrylcholinesterase inhibitory activities. Med. Chem. Res., 2014, 1-8.
[102]
Hirata, K. NC-129—a new acaricide; Brighton Crop Prot. Conf.-Pests Dis, 1988.
[103]
Hirata, K. Development of a new acaricide, pyridaben. J. Pestic. Sci.-pestic. Sci. Soci. Japan-japane. Edit., 1995, 20, 177-177.
[104]
Hollingworth, R.M.; Ahammadsahib, K.I.; Gadelhak, G.; McLaughlin, J.L. New inhibitors of Complex I of the mitochondrial electron transport chain with activity as pesticides. Biochem. Soc. Trans., 1994, 22(1), 230-233.
[http://dx.doi.org/10.1042/bst0220230] [PMID: 8206238]
[105]
Miyake, T.; Haruyama, H.; Mitsui, T.; Sakurai, A. Effects of a new juvenile hormone mimic, NC-170, on metamorphosis and diapause of the small brown planthopper, Laodelphax striatellus. J. Pestic. Sci., 1992, 17(1), 75-82.
[http://dx.doi.org/10.1584/jpestics.17.75]
[106]
Cao, S.; Qian, X.; Song, G.; Chai, B.; Jiang, Z. Synthesis and antifeedant activity of new oxadiazolyl 3(2H)-pyridazinones. J. Agric. Food Chem., 2003, 51(1), 152-155.
[http://dx.doi.org/10.1021/jf0208029] [PMID: 12502400]
[107]
Bean, G.A.; Southall, A. Effect of pyridazinone herbicides on growth and aflatoxin release by Aspergillus flavus and Aspergillus parasiticus. Appl. Environ. Microbiol., 1983, 46(2), 503-505.
[http://dx.doi.org/10.1128/aem.46.2.503-505.1983] [PMID: 6414373]
[108]
Smith, D.T.; Meggitt, W.F. Movement and distribution of pyrazon in soil. Weed Sci., 1970, 18(2), 255-259.
[http://dx.doi.org/10.1017/S0043174500079698]
[109]
Jamet, P.; Piedallu, M.; Hascoet, M. Migration and degradation of aldicarb in various types of soil; Comparative Studies of Food and Environmental Contamination, 1974.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy